skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evaluation and Optimization of Dual-Arm Robot Path Planning for Human–Robot Collaborative Tasks in Smart Manufacturing Contexts
Abstract In human–robot collaborative tasks, the performance of robot path planning has a direct impact on the robot-to-human hand-over process, or even the collaboration quality. In this work, we propose an evaluation study on multiple robot path planners with different metrics and reveal their pros and cons in representative human–robot collaborative manufacturing contexts. Afterward, based on the proposed metrics, we define a cost function for the dual-arm robot to choose optimized path planning solutions with maximum efficiency for its human partner in human–robot collaboration. We implement the proposed evaluation and optimization approaches to multiple realistic human–robot collaborative manufacturing contexts. Experimental results and evaluations suggest that our approaches are able to provide positive solutions for the robot path planner selection and also open a window for exploring more complicated and general robot path planning applications to human–robot collaborative tasks in smart manufacturing contexts.  more » « less
Award ID(s):
1845779
PAR ID:
10274305
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ASME Letters in Dynamic Systems and Control
Volume:
1
Issue:
1
ISSN:
2689-6117
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. With the introduction of Industry 5.0, there is a growing focus on human-robot collaboration and the empowerment of human workers through the se of robotic technologies. Collaborative robots, or cobots, are well suited for filling the needs of industry. Cobots have a prioritization on safety and collaboration, giving them the unique ability to work in close proximity with people. This has the potential impact of increasing task productivity and efficiency while reducing ergonomic strain on human workers, as cobots can collaborate on tasks as teammates and support their human collaborators. However, effectively deploying and using cobots requires multidisciplinary knowledge spanning fields such as human factors and ergonomics, economics, and human-robot interaction. This knowledge barrier represents a growing challenge in industry, as workers lack the skills necessary to effectively leverage and realize the potential of cobots within their applications, resulting in cobots often being used non-collaboratively as a form of cheap automation. This presents several research opportunities for the creation of new cobot systems that support users in the creation of cobot interactions. The goal of this dissertation is to explore the use of abstraction and scaffolding supports within cobot systems to assist users in building human-robot collaborations. Specifically, this research (1) presents updates to the design of systems for planning and programming collaborative tasks, and (2) evaluates each system to understand how it can support user creation of cobot interactions. First, I present the CoFrame cobot programming system, a tool built on prior work, and illustrate how it supports user creation and understanding of cobot programs. Then, I present the evaluation of the system with domain experts, novices, and a real-world deployment to understand in which ways CoFrame does and does not successfully support users. I then describe the Allocobot system for allocating work and planning collaborative interactions, describing how it encodes multiple models of domain knowledge within its representation. Finally, I evaluate the Allocobot system in two real-world scenarios to understand how it produces and optimizes viable interaction plans. 
    more » « less
  2. Collaborative robots provide prospective and great solutions to human–robot cooperative tasks. In this paper, we present a comprehensive review for two significant topics in human–robot interaction: robots learning from demonstrations and human comfort. The collaboration quality between the human and the robot has been improved largely by taking advantage of robots learning from demonstrations. Human teaching and robot learning approaches with their corresponding applications are investigated in this review. We also discuss several important issues that need to be paid attention to and addressed in the human–robot teaching–learning process. After that, the factors that may affect human comfort in human–robot interaction are described and discussed. Moreover, the measures utilized to improve human acceptance of robots and human comfort in human–robot interaction are also presented and discussed. 
    more » « less
  3. Benjamin, Paaßen; Carrie, Demmans Epp (Ed.)
    One of the keys to the success of collaborative learning is balanced participation by all learners, but this does not always happen naturally. Pedagogical robots have the potential to facilitate balance. However, it remains unclear what participation balance robots should aim at; various metrics have been proposed, but it is still an open question whether we should balance human participation in human-human interactions (HHI) or human-robot interactions (HRI) and whether we should consider robots' participation in collaborative learning involving multiple humans and a robot. This paper examines collaborative learning between a pair of students and a teachable robot that acts as a peer tutee to answer the aforementioned question. Through an exploratory study, we hypothesize which balance metrics in the literature and which portions of dialogues (including vs. excluding robots' participation and human participation in HHI vs. HRI) will better predict learning as a group. We test the hypotheses with another study and replicate them with automatically obtained units of participation to simulate the information available to robots when they adaptively fix imbalances in real-time. Finally, we discuss recommendations on which metrics learning science researchers should choose when trying to understand how to facilitate collaboration. 
    more » « less
  4. We present V.Ra, a visual and spatial programming system for robot-IoT task authoring. In V.Ra, programmable mobile robots serve as binding agents to link the stationary IoTs and perform collaborative tasks. We establish an ecosystem that coherently connects the three key elements of robot task planning (human-robot-IoT) with one single AR-SLAM device. Users can perform task authoring in an analogous manner with the Augmented Reality (AR) interface. Then placing the device onto the mobile robot directly transfers the task plan in a what-you-do-is-what-robot-does (WYDWRD) manner. The mobile device mediates the interactions between the user, robot and IoT oriented tasks, and guides the path planning execution with the SLAM capability. 
    more » « less
  5. This paper addresses human-robot collaboration (HRC) challenges of integrating predictions of human activity to provide a proactive-n-reactive response capability for the robot. Prior works that consider current or predicted human poses as static obstacles are too nearsighted or too conservative in planning, potentially causing delayed robot paths. Alternatively, time-varying prediction of human poses would enable robot paths that avoid anticipated human poses, synchronized dynamically in time and space. Herein, a proactive path planning method, denoted STAP, is presented that uses spatiotemporal human occupancy maps to find robot trajectories that anticipate human movements, allowing robot passage without stopping. In addition, STAP anticipates delays from robot speed restrictions required by ISO/TS 15066 speed and separation monitoring (SSM). STAP also proposes a sampling-based planning algorithm based on RRT* to solve the spatio-temporal motion planning problem and find paths of minimum expected duration. Experimental results show STAP generates paths of shorter duration and greater average robot-human separation distance throughout tasks. Additionally, STAP more accurately estimates robot trajectory durations in HRC, which are useful in arriving at proactive-n-reactive robot sequencing. 
    more » « less