skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 1, 2026

Title: O(2)-symmetry of 3D steady gradient Ricci solitons
We prove that all 3D steady gradient Ricci solitons are O(2)-symmetric. The O(2)-symmetry is the most universal symmetry in Ricci flows with any type of symmetries. Our theorem is also the first instance of symmetry theorem for Ricci flows that are not rotationally symmetric. We also show that the Bryant soliton is the unique 3D steady gradient Ricci soliton with positive curvature that is asymptotic to a ray.  more » « less
Award ID(s):
2530438 2203310
PAR ID:
10592694
Author(s) / Creator(s):
Publisher / Repository:
Mathematical Sciences Publishers
Date Published:
Journal Name:
Geometry & Topology
Volume:
29
Issue:
2
ISSN:
1465-3060
Page Range / eLocation ID:
687 to 789
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. This is a survey on the recent developments on steady gradi- ent Ricci solitons. In any dimension n ≥ 3, we constructed a new family of steady gradient Ricci solitons with positive curvature operator. In dimension three, these solitons are flying wings, as conjectured by Hamilton. We also proved that all 3D steady gradient Ricci solitons are O(2)-symmetric. 
    more » « less
  2. In 1996, H.-D. Cao constructed a U(n)-invariant steady gradient Kähler-Ricci soliton on Cn and asked whether every steady gradient Kähler-Ricci soliton of positive curvature on Cn is necessarily U(n)-invariant (and hence unique up to scaling). Recently, Apostolov-Cifarelli answered this question in the negative for n=2. Here, we construct a family of U(1)×U(n−1)-invariant, but not U(n)-invariant, complete steady gradient Kähler-Ricci solitons with strictly positive curvature operator on real (1,1)-forms (in particular, with strictly positive sectional curvature) on Cn for n≥3, thereby answering Cao's question in the negative for n≥3. This family of steady Ricci solitons interpolates between Cao's U(n)-invariant steady Kähler-Ricci soliton and the product of the cigar soliton and Cao's U(n−1)-invariant steady Kähler-Ricci soliton. This provides the Kähler analog of the Riemannian flying wings construction of Lai. In the process of the proof, we also demonstrate that the almost diameter rigidity of Pn endowed with the Fubini-Study metric does not hold even if the curvature operator is bounded below by 2 on real (1,1)-forms. 
    more » « less
  3. We show that, up to the flow of the soliton vector field, there exists a unique complete steady gradient Kähler-Ricci soliton in every Kähler class of an equivariant crepant resolution of a Calabi-Yau cone converging at a polynomial rate to Cao's steady gradient Kähler-Ricci soliton on the cone. 
    more » « less
  4. Abstract We will show that if a gradient shrinking Ricci soliton has an approximate symmetry on one scale, this symmetry propagates to larger scales. This is an example of the shrinker principle which roughly states that information radiates outwards for shrinking solitons. 
    more » « less
  5. null (Ed.)
    Abstract In a recent paper, Brendle showed the uniqueness of the Bryant soliton among 3-dimensional κ-solutions.In this paper, we present an alternative proof for this fact and show that compact κ-solutions are rotationally symmetric.Our proof arose from independent work relating to our Strong Stability Theorem for singular Ricci flows. 
    more » « less