skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Time-resolved velocity and ion sound speed measurements from simultaneous bow shock imaging and inductive probe measurements
We present a technique to measure the time-resolved velocity and ion sound speed in magnetized, supersonic high-energy-density plasmas. We place an inductive (“b-dot”) probe in a supersonic pulsed-power-driven plasma flow and measure the magnetic field advected by the plasma. As the magnetic Reynolds number is large (RM > 10), the plasma flow advects a magnetic field proportional to the current at the load. This enables us to estimate the flow velocity as a function of time from the delay between the current at the load and the signal at the probe. The supersonic flow also generates a hydrodynamic bow shock around the probe, the structure of which depends on the upstream sonic Mach number. By imaging the shock around the probe with a Mach–Zehnder interferometer, we determine the upstream Mach number from the shock Mach angle, which we then use to determine the ion sound speed from the known upstream velocity. We use the sound speed to infer the value of Z̄Te, where Z̄ is the average ionization and Te is the electron temperature. We use this diagnostic to measure the time-resolved velocity and sound speed of a supersonic (MS ∼ 8), super-Alfvénic (MA ∼ 2) aluminum plasma generated during the ablation stage of an exploding wire array on the Magpie generator (1.4 MA, 250 ns). The velocity and Z̄Te measurements agree well with the optical Thompson scattering measurements reported in the literature and with 3D resistive magnetohydrodynamic simulations in GORGON.  more » « less
Award ID(s):
2108050
PAR ID:
10592717
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
Review of Scientific Instruments
Volume:
93
Issue:
10
ISSN:
0034-6748
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We investigate three-dimensional (3-D) bow shocks in a highly collisional magnetized aluminium plasma, generated during the ablation phase of an exploding wire array on the MAGPIE facility (1.4 MA, 240 ns). Ablation of plasma from the wire array generates radially diverging, supersonic ( $$M_S \sim 7$$ ), super-Alfvénic ( $$M_A > 1$$ ) magnetized flows with frozen-in magnetic flux ( $$R_M \gg 1$$ ). These flows collide with an inductive probe placed in the flow, which serves both as the obstacle that generates the magnetized bow shock, and as a diagnostic of the advected magnetic field. Laser interferometry along two orthogonal lines of sight is used to measure the line-integrated electron density. A detached bow shock forms ahead of the probe, with a larger opening angle in the plane parallel to the magnetic field than in the plane normal to it. Since the resistive diffusion length of the plasma is comparable to the probe size, the magnetic field decouples from the ion fluid at the shock front and generates a hydrodynamic shock, whose structure is determined by the sonic Mach number, rather than the magnetosonic Mach number of the flow. The 3-D simulations performed using the resistive magnetohydrodynamic (MHD) code Gorgon confirm this picture, but under-predict the anisotropy observed in the shape of the experimental bow shock, suggesting that non-MHD mechanisms may be important for modifying the shock structure. 
    more » « less
  2. We report the characteristics of collisional plasma shocks formed during interactions between low density (ne≈1015 cm−3), low temperature (Te≈2 eV), high velocity (30 km s−1), plasma jets and stagnant plasma of similar parameters. This investigation seeks to probe the structure of shocks in multi-ion-species plasmas, in particular, the presence of gradient-driven ion species separation at the shock front. The railgun-accelerated jets utilized here have previously been shown to exist in a collisional regime with intra-jet collisional mean-free-path substantially smaller than jet size [Schneider et al., Plasma Sources Sci. Technol. 29, 045013 (2020)]. To induce collisions, a dielectric barrier is located downstream of the railgun to stagnate an initially supersonic plasma jet. Around the time of stagnation, the railgun emits a second jet which shortly collides with the stagnant plasma. The presence of a structure emitting in the UV-visible band is evident in high-speed photographs of the moments immediately following the arrival of the second jet at the stagnant plasma. Analysis of interferometric and spectroscopic data suggests that the observed increase in density from the jet to the post-collision plasma is consistent with the formation of a bow shock structure with a multi-millimeter-scale ion shock layer. 
    more » « less
  3. Abstract The ability of collisionless shocks to efficiently accelerate nonthermal electrons via diffusive shock acceleration (DSA) is thought to require an injection mechanism capable of preaccelerating electrons to high enough energy where they can start crossing the shock front potential. We propose, and show via fully kinetic plasma simulations, that in high-Mach-number shocks electrons can be effectively injected by scattering in kinetic-scale magnetic turbulence produced near the shock transition by the ion Weibel, or current filamentation, instability. We describe this process as a modified DSA mechanism where initially thermal electrons experience the flow velocity gradient in the shock transition and are accelerated via a first-order Fermi process as they scatter back and forth. The electron energization rate, diffusion coefficient, and acceleration time obtained in the model are consistent with particle-in-cell simulations and with the results of recent laboratory experiments where nonthermal electron acceleration was observed. This injection model represents a natural extension of DSA and could account for electron injection in high-Mach-number astrophysical shocks, such as those associated with young supernova remnants and accretion shocks in galaxy clusters. 
    more » « less
  4. In shockwave theory, the density, velocity and pressure jumps are derived from the conservation equations. Here, we address the physics of a weak shock the other way around. We first show that the density profile of a weak shockwave in a fluid can be expressed as a sum of linear acoustic modes. The shock so built propagates at the speed of sound and matter is exactly conserved at the front crossing. Yet, momentum and energy are only conserved up to order 0 in powers of the shock amplitude. The density, velocity and pressure jumps are similar to those of a fluid shock, and an equivalent Mach number can be defined. A similar process is possible in magnetohydrodynamics. Yet, such a decomposition is found impossible for collisionless shocks due to the dispersive nature of ion acoustic waves. Weakly nonlinear corrections to their frequency do not solve the problem. Weak collisionless shocks could be inherently nonlinear, non-amenable to any linear superposition. Or they could be non-existent, as hinted by recent works. 
    more » « less
  5. We present observations of wave steepening and signatures of shock formation during expansion of ultracold neutral plasmas formed with an initial density distribution that is centrally peaked and decays exponentially with distance. The plasma acceleration and velocity decrease at large distance from the plasma center, leading to central ions overtaking ions in the outer regions and the development of a steepening front that is narrow compared to the size of the plasma. The density and velocity change dramatically across the front, and significant heating of the ions is observed in the region of steepest gradients. For a reasonable estimate of electron temperature, the relative velocity of ions on either side of the front modestly exceeds the local sound speed (Mach number M≳1). This indicates that by sculpting steep density gradients, it is possible to create the conditions for shock formation, or very close to it, opening a new avenue of research for ultracold neutral plasmas. 
    more » « less