skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 1, 2026

Title: Noninvertible Symmetry-Protected Topological Order in a Group-Based Cluster State
Despite growing interest in beyond-group symmetries in quantum condensed matter systems, there are relatively few microscopic lattice models explicitly realizing these symmetries, and many phenomena have yet to be studied at the microscopic level. We introduce a one-dimensional stabilizer Hamiltonian composed of group-based Pauli operators whose ground state is a G × Rep ( G ) -symmetric state: the G -cluster state introduced by Brell []. We show that this state lies in a symmetry-protected topological (SPT) phase protected by G × Rep ( G ) symmetry, distinct from the symmetric product state by a duality argument. We identify several signatures of SPT order, namely, protected edge modes, string order parameters, and topological response. We discuss how G -cluster states may be used as a universal resource for measurement-based quantum computation, explicitly working out the case where G is a semidirect product of Abelian groups. Published by the American Physical Society2025  more » « less
Award ID(s):
2120757
PAR ID:
10592828
Author(s) / Creator(s):
; ;
Publisher / Repository:
PHYSICAL REVIEW X
Date Published:
Journal Name:
Physical Review X
Volume:
15
Issue:
1
ISSN:
2160-3308
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Symmetry algebras of quantum many-body systems with locality can be understood using commutant algebras, which are defined as algebras of operators that commute with a given set of local operators. In this work, we show that these symmetry algebras can be expressed as frustration-free ground states of a local superoperator, which we refer to as a “super-Hamiltonian.” We demonstrate this for conventional symmetries such as Z 2 , U ( 1 ) , and S U ( 2 ) , where the symmetry algebras map to various kinds of ferromagnetic ground states, as well as for unconventional ones that lead to weak ergodicity-breaking phenomena of Hilbert-space fragmentation (HSF) and quantum many-body scars. In addition, we show that the low-energy excitations of this super-Hamiltonian can be understood as approximate symmetries, which in turn are related to slowly relaxing hydrodynamic modes in symmetric systems. This connection is made precise by relating the super-Hamiltonian to the superoperator that governs the operator relaxation in noisy symmetric Brownian circuits and this physical interpretation also provides a novel interpretation for Mazur bounds for autocorrelation functions. We find examples of gapped (gapless) super-Hamiltonians indicating the absence (presence) of slow modes, which happens in the presence of discrete (continuous) symmetries. In the gapless cases, we recover hydrodynamic modes such as diffusion, tracer diffusion, and asymptotic scars in the presence of U ( 1 ) symmetry, HSF, and a tower of quantum scars, respectively. In all, this demonstrates the power of the commutant-algebra framework in obtaining a comprehensive understanding of exact symmetries and associated approximate symmetries and hydrodynamic modes, and their dynamical consequences in systems with locality. Published by the American Physical Society2024 
    more » « less
  2. R -parity can be extended to a continuous global U ( 1 ) R symmetry. We investigate whether an anomalous U ( 1 ) R can be identified as the Peccei-Quinn symmetry suitable for solving the strong C P problem within supersymmetric extensions of the Standard Model. In this case, U ( 1 ) R is broken at some intermediate scale and the quantum chromodynamics axion is the R -axion. Moreover, the R -symmetry can potentially be gauged via the Green-Schwarz mechanism within completions to supergravity, in order to evade the axion quality problem. Obstacles to realizing this scenario are highlighted and phenomenologically viable approaches are identified. Published by the American Physical Society2025 
    more » « less
  3. We discuss numerical aspects of instantons in two- and three-dimensional ϕ 4 theories with an internal O ( N ) symmetry group, the so-called N -vector model. By combining asymptotic transseries expansions for large arguments with convergence acceleration techniques, we obtain high-precision values for certain integrals of the instanton that naturally occur in loop corrections around instanton configurations. Knowledge of these numerical properties is necessary in order to evaluate corrections to the large-order factorial growth of perturbation theory in ϕ 4 theories. The results contribute to the understanding of the mathematical structures underlying the instanton configurations. Published by the American Physical Society2024 
    more » « less
  4. This Letter reports new results from the HAYSTAC experiment’s search for dark matter axions in our galactic halo. It represents the widest search to date that utilizes squeezing to realize subquantum limited noise. The new results cover 1.71 μ eV of newly scanned parameter space in the mass ranges 17.28 18.44 μ eV and 18.71 19.46 μ eV . No statistically significant evidence of an axion signal was observed, excluding couplings | g γ | 2.75 × | g γ KSVZ | and | g γ | 2.96 × | g γ KSVZ | at the 90% confidence level over the respective region. By combining this data with previously published results using HAYSTAC’s squeezed state receiver, a total of 2.27 μ eV of parameter space has now been scanned between 16.96 19.46 μ eV μ eV , excluding | g γ | 2.86 × | g γ KSVZ | at the 90% confidence level. These results demonstrate the squeezed state receiver’s ability to probe axion models over a significant mass range while achieving a scan rate enhancement relative to a quantum-limited experiment. Published by the American Physical Society2025 
    more » « less
  5. The global symmetries of a D -dimensional quantum field theory (QFT) can, in many cases, be captured in terms of a ( D + 1 )-dimensional symmetry topological field theory (SymTFT). In this work we construct a ( D + 1 )-dimensional theory which governs the symmetries of QFTs with multiple sectors which have connected correlators that admit a decoupling limit. The associated symmetry field theory decomposes into a SymTree, namely a treelike structure of SymTFTs fused along possibly nontopological junctions. In string-realized multisector QFTs, these junctions are smoothed out in the extradimensional geometry, as we demonstrate in examples. We further use this perspective to study the fate of higher-form symmetries in the context of holographic large M averaging where the topological sectors of different large M replicas become dressed by additional extended operators associated with the SymTree. Published by the American Physical Society2024 
    more » « less