skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Edge‐Passivated Monolayer WSe 2 Nanoribbon Transistors
Abstract The ongoing reduction in transistor sizes drives advancements in information technology. However, as transistors shrink to the nanometer scale, surface and edge states begin to constrain their performance. 2D semiconductors like transition metal dichalcogenides (TMDs) have dangling‐bond‐free surfaces, hence achieving minimal surface states. Nonetheless, edge state disorder still limits the performance of width‐scaled 2D transistors. This work demonstrates a facile edge passivation method to enhance the electrical properties of monolayer WSe2nanoribbons, by combining scanning transmission electron microscopy, optical spectroscopy, and field‐effect transistor (FET) transport measurements. Monolayer WSe2nanoribbons are passivated with amorphous WOxSeyat the edges, which is achieved using nanolithography and a controlled remote O2plasma process. The same nanoribbons, with and without edge passivation are sequentially fabricated and measured. The passivated‐edge nanoribbon FETs exhibit 10 ± 6 times higher field‐effect mobility than the open‐edge nanoribbon FETs, which are characterized with dangling bonds at the edges. WOxSeyedge passivation minimizes edge disorder and enhances the material quality of WSe2nanoribbons. Owing to its simplicity and effectiveness, oxidation‐based edge passivation could become a turnkey manufacturing solution for TMD nanoribbons in beyond‐silicon electronics and optoelectronics.  more » « less
Award ID(s):
2309037
PAR ID:
10592983
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Advanced Materials
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Source/Drain extension doping is crucial for minimizing the series resistance of the ungated channel and reducing the contact resistance of field‐effect transistors (FETs) in complementary metal–oxide–semiconductor (CMOS) technology. 2D semiconductors, such as MoS2and WSe2, are promising channel materials for beyond‐silicon CMOS. A key challenge is to achieve extension doping for 2D monolayer FETs without damaging the atomically thin material. This work demonstrates extension doping with low‐resistance contacts for monolayer WSe2p‐FETs. Self‐limiting oxidation transforms a bilayer WSe2into a hetero‐bilayer of a high‐work‐function WOxSeyon a monolayer WSe2. Then, damage‐free nanolithography defines an undoped nano‐channel, preserving the high on‐current of WOxSey‐doped FETs while significantly improving their on/off ratio. The insertion of an amorphous WOxSeyinterlayer under the contacts achieves record‐low contact resistances for monolayer WSe2over a hole density range of 1012to 1013cm−2(1.2 ± 0.3 kΩ µm at 1013cm−2). The WOxSey‐doped extension exhibits a sheet resistance as low as 10 ± 1 kΩ □−1. Monolayer WSe2p‐FETs with sub‐50 nm channel lengths reach a maximum drain current of 154 µA µm−1with an on/off ratio of 107–108. These results define strategies for nanometer‐scale selective‐area doping in 2D FETs and other 2D architectures. 
    more » « less
  2. Chemical vapor deposition of CH 4 on Ge(001) can enable anisotropic growth of narrow, semiconducting graphene nanoribbons with predominately smooth armchair edges and high-performance charge transport properties. However, such nanoribbons are not aligned in one direction but instead grow perpendicularly, which is not optimal for integration into high-performance electronics. Here, it is demonstrated that vicinal Ge(001) substrates can be used to synthesize armchair nanoribbons, of which ∼90% are aligned within ±1.5° perpendicular to the miscut. When the growth rate is slow, graphene crystals evolve as nanoribbons. However, as the growth rate increases, the uphill and downhill crystal edges evolve asymmetrically. This asymmetry is consistent with stronger binding between the downhill edge and the Ge surface, for example due to different edge termination as shown by density functional theory calculations. By tailoring growth rate and time, nanoribbons with sub-10 nm widths that exhibit excellent charge transport characteristics, including simultaneous high on-state conductance of 8.0 μS and a high on/off conductance ratio of 570 in field-effect transistors, are achieved. Large-area alignment of semiconducting ribbons with promising charge transport properties is an important step towards understanding the anisotropic nanoribbon growth and integrating these materials into scalable, future semiconductor technologies. 
    more » « less
  3. We performed a comprehensive first-principles study on the structural and electronic properties of ZnSe two-dimensional (2D) nanosheets and their derived one-dimensional (1D) nanoribbons (NRs) and nanotubes (NTs). Both hexagonal and tetragonal phases of ZnSe (h-ZnSe and t-ZnSe) were considered. The tetragonal phase is thermodynamically more favorable for 2D monolayers and 1D pristine ribbons, in contrast, the hexagonal phase is preferred for the edge-hydrogenated 1D NRs and NTs. The 2D h-ZnSe monolayer is a direct-bandgap semiconductor. Both the pristine zigzag nanoribbons (z-hNRs) and the corresponding edge-hydrogenated NRs gradually convert from the direct-bandgap semiconducting phase into a metallic phase as the ribbon width increases; the pristine armchair nanoribbons (a-hNRs) remain as semiconductors with indirect bandgaps with increasing ribbon width, and edge hydrogenating switches the indirect-bandgap feature to the direct-bandgap character or the metallic character with different edge passivation styles. The 1D h-ZnSe single-walled nanotubes in both armchair and zigzag forms keep the direct-bandgap semiconducting property of the 2D counterpart but with smaller band gaps. For the thermodynamically more favorable t-ZnSe monolayer, the intrinsic direct-bandgap semiconducting character is rather robust: the derived 1D nanoribbons with edges unsaturated or hydrogenated fully, and 1D single-walled nanotubes all preserve the direct-bandgap semiconducting feature. Our systemic study provides deep insights into the electronic properties of ZnSe-based nanomaterials and is helpful for experimentalists to design and fabricate ZnSe-based nanoelectronics. 
    more » « less
  4. Lateral multiheterostructures with spatially modulated bandgaps have great potential for applications in high-performance electronic, optoelectronic and thermoelectric devices. Multiheterostructures based on transition metal tellurides are especially promising due to their tunable bandgap in a wide range and the rich variety of structural phases. However, the synthesis of telluride-based multiheterostructures remains a challenge due to the low activity of tellurium and the poor thermal stability of tellurium alloys. In this work, we synthesized monolayer WSe 2−2 x Te 2 x /WSe 2−2 y Te 2 y ( x > y ) multiheterostructures in situ using chemical vapor deposition (CVD). Photoluminescence analysis and Raman mapping confirm the spatial modulation of the bandgap in the radial direction. Furthermore, field-effect transistors with the channels parallel (type I) and perpendicular (type II) to the multiheterostructure rings were fabricated. Type I transistors exhibit enhanced ambipolar transport, due to the low energy bridges between the source and drain. Remarkably, the photocurrents in type I transistors are two orders of magnitude higher than those in type II transistors, which can be attributed to the fact that the photovoltaic photocurrents generated at the two heterojunctions are summed together in type I transistors, but they cancel each other in type II transistors. These multiheterostructures will provide a new platform for novel electronic/photonic devices with potential applications in broadband light sensing, highly sensitive imaging and ultrafast optoelectronic integrated circuits. 
    more » « less
  5. In this work, we report a study of the temperature dependent pulsed current voltage and RF characterization of [Formula: see text]-(Al x Ga 1−x ) 2 O 3 /Ga 2 O 3 hetero-structure FETs (HFETs) before and after silicon nitride (Si 3 N 4 ) passivation. Under sub-microsecond pulsing, a moderate DC-RF dispersion (current collapse) is observed before passivation in gate lag measurements, while no current collapse is observed in the drain lag measurements. The dispersion in the gate lag is possibly attributed to interface traps in the gate–drain access region. DC-RF dispersion did not show any strong dependence on the pulse widths. Temperature dependent RF measurements up to 250 °C do not show degradation in the cutoff frequencies. After Si 3 N 4 deposition at 350 °C, a shift of the threshold voltage is observed which changed the DC characteristics. However, the current collapse is eliminated; at 200 ns pulse widths, a 50% higher current is observed compared to the DC at high drain voltages. No current collapse is observed even at higher temperatures. RF performance of the passivated devices does not show degradation. These results show that ex situ deposited Si 3 N 4 is a potential candidate for passivation of [Formula: see text]-(Al x Ga 1−x ) 2 O 3 /Ga 2 O 3 HFETs. 
    more » « less