Data Valuation in machine learning is concerned with quantifying the relative contribution of a training example to a model’s performance. Quantifying the importance of training examples is useful for identifying high and low quality data to curate training datasets and for address data quality issues. Shapley values have gained traction in machine learning for curating training data and identifying data quality issues. While computing the Shapley values of training examples is computationally prohibitive, approximation methods have been used successfully for classification models in computer vision tasks. We investigate data valuation for Automatic Speech Recognition models which perform a structured prediction task and propose a method for estimating Shapley values for these models. We show that a proxy model can be learned for the acoustic model component of an end-to-end ASR and used to estimate Shapley values for acoustic frames. We present a method for using the proxy acoustic model to estimate Shapley values for variable length utterances and demonstrate that the Shapley values provide a signal of example quality.
more »
« less
This content will become publicly available on April 29, 2026
ALinFiK: Learning to Approximate Linearized Future Influence Kernel for Scalable Third-Parity LLM Data Valuation
Large Language Models (LLMs) heavily rely on high-quality training data, making data valuation crucial for optimizing model performance, especially when working within a limited budget. In this work, we aim to offer a third-party data valuation approach that benefits both data providers and model developers. We introduce a linearized future influence kernel (LinFiK), which assesses the value of individual data samples in improving LLM performance during training. We further propose ALinFiK, a learning strategy to approximate LinFiK, enabling scalable data valuation. Our comprehensive evaluations demonstrate that this approach surpasses existing baselines in effectiveness and efficiency, demonstrating significant scalability advantages as LLM parameters increase.
more »
« less
- Award ID(s):
- 2247619
- PAR ID:
- 10593020
- Editor(s):
- Chiruzzo, Luis; Ritter, Alan; Wang, Lu
- Publisher / Repository:
- Association for Computational Linguistics
- Date Published:
- ISBN:
- 979-8-89176-189-6
- Format(s):
- Medium: X
- Location:
- Albuquerque, New Mexico
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Recognizing if LLM output can be grounded in evidence is central to many tasks in NLP: retrieval-augmented generation, summarization, document-grounded dialogue, and more. Current approaches to this kind of fact-checking are based on verifying each piece of a model generation against potential evidence using an LLM. However, this process can be very computationally expensive, requiring many calls to a model to check a single response. In this work, we show how to build small fact-checking models that have GPT-4-level performance but for 400x lower cost. We do this by constructing synthetic training data with GPT-4, which involves creating realistic yet challenging instances of factual errors via a structured generation procedure. Training on this data teaches models to check each fact in the claim and recognize synthesis of information across sentences. For evaluation, we unify datasets from recent work on fact-checking and grounding LLM generations into a new benchmark, LLM-AggreFact. Our best system MiniCheck-FT5 (770M parameters) outperforms all systems of comparable size and reaches GPT-4 accuracy. We release LLM-AggreFact, code for data synthesis, and models.more » « less
-
Over the past few years, Large Language Models of Code (Code LLMs) have started to have a significant impact on programming practice. Code LLMs are also emerging as building blocks for research in programming languages and software engineering. However, the quality of code produced by a Code LLM varies significantly by programming language. Code LLMs produce impressive results on high-resource programming languages that are well represented in their training data (e.g., Java, Python, or JavaScript), but struggle with low-resource languages that have limited training data available (e.g., OCaml, Racket, and several others). This paper presents an effective approach for boosting the performance of Code LLMs on low-resource languages using semi-synthetic data. Our approach, called MultiPL-T, generates high-quality datasets for low-resource languages, which can then be used to fine-tune any pretrained Code LLM. MultiPL-T translates training data from high-resource languages into training data for low-resource languages in the following way. 1) We use a Code LLM to synthesize unit tests for commented code from a high-resource source language, filtering out faulty tests and code with low test coverage. 2) We use a Code LLM to translate the code from the high-resource source language to a target low-resource language. This gives us a corpus of candidate training data in the target language, but many of these translations are wrong. 3) We use a lightweight compiler to compile the test cases generated in (1) from the source language to the target language, which allows us to filter our obviously wrong translations. The result is a training corpus in the target low-resource language where all items have been validated with test cases. We apply this approach to generate tens of thousands of new, validated training items for five low-resource languages: Julia, Lua, OCaml, R, and Racket, using Python as the source high-resource language. Furthermore, we use an open Code LLM (StarCoderBase) with open training data (The Stack), which allows us to decontaminate benchmarks, train models without violating licenses, and run experiments that could not otherwise be done. Using datasets generated with MultiPL-T, we present fine-tuned versions of StarCoderBase and Code Llama for Julia, Lua, OCaml, R, and Racket that outperform other fine-tunes of these base models on the natural language to code task. We also present Racket fine-tunes for two very recent models, DeepSeek Coder and StarCoder2, to show that MultiPL-T continues to outperform other fine-tuning approaches for low-resource languages. The MultiPL-T approach is easy to apply to new languages, and is significantly more efficient and effective than alternatives such as training longer.more » « less
-
Uncertainty decomposition refers to the task of decomposing the total uncertainty of a predictive model into aleatoric (data) uncertainty, resulting from inherent randomness in the data-generating process, and epistemic (model) uncertainty, resulting from missing information in the model’s training data. In large language models (LLMs) specifically, identifying sources of uncertainty is an important step toward improving reliability, trustworthiness, and interpretability, but remains an important open research question. In this paper, we introduce an uncertainty decomposition framework for LLMs, called input clarification ensembling, which can be applied to any pre-trained LLM. Our approach generates a set of clarifications for the input, feeds them into an LLM, and ensembles the corresponding predictions. We show that, when aleatoric uncertainty arises from ambiguity or under-specification in LLM inputs, this approach makes it possible to factor an (un-clarified) LLM’s predictions into separate aleatoric and epistemic terms, using a decomposition similar to the one employed by Bayesian neural networks. Empirical evaluations demonstrate that input clarification ensembling provides accurate and reliable uncertainty quantification on several language processing tasks.more » « less
-
Large language models (LLM) are perceived to offer promising potentials for automating security tasks, such as those found in security operation centers (SOCs). As a first step towards evaluating this perceived potential, we investigate the use of LLMs in software pentesting, where the main task is to automatically identify software security vulnerabilities in source code. We hypothesize that an LLM-based AI agent can be improved over time for a specific security task as human operators interact with it. Such improvement can be made, as a first step, by engineering prompts fed to the LLM based on the responses produced, to include relevant contexts and structures so that the model provides more accurate results. Such engineering efforts become sustainable if the prompts that are engineered to produce better results on current tasks, also produce better results on future unknown tasks. To examine this hypothesis, we utilize the OWASP Benchmark Project 1.2 which contains 2,740 hand-crafted source code test cases containing various types of vulnerabilities. We divide the test cases into training and testing data, where we engineer the prompts based on the training data (only), and evaluate the final system on the testing data. We compare the AI agent’s performance on the testing data against the performance of the agent without the prompt engineering. We also compare the AI agent’s results against those from SonarQube, a widely used static code analyzer for security testing. We built and tested multiple versions of the AI agent using different off-the-shelf LLMs – Google’s Gemini-pro, as well as OpenAI’s GPT-3.5-Turbo and GPT-4-Turbo (with both chat completion and assistant APIs). The results show that using LLMs is a viable approach to build an AI agent for software pentesting that can improve through repeated use and prompt engineering.more » « less
An official website of the United States government
