skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 15, 2025

Title: Fast Sentence Classification using Word Co-occurrence Graphs
We consider a supervised classification problem of categorizing e-commerce products based on just the words in the title. If done in real-time, the categorization can greatly benefit sellers by enabling them to offer immediate feedback. We present a deterministic algorithm by constructing weighted word co-occurrence graphs from the listing/item titles. We empirically evaluate this algorithm on two publicly available product listing datasets, Etsy and Amazon. Our method’s accuracy is comparable to that of a supervised classifier constructed using the fastText library. The inference time of our model is up to 2.9× faster than the fastText classifier and has small training times. The training and inference of our model scales well for big datasets performing large-scale classification on millions of listings. We perform a detailed analysis and provide insights into our method and the product categorization task.  more » « less
Award ID(s):
1955971
PAR ID:
10593050
Author(s) / Creator(s):
; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3503-6248-0
Page Range / eLocation ID:
620 to 629
Format(s):
Medium: X
Location:
Washington, DC, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Text categorization is an essential task in Web content analysis. Considering the ever-evolving Web data and new emerging categories, instead of the laborious supervised setting, in this paper, we focus on the minimally-supervised setting that aims to categorize documents effectively, with a couple of seed documents annotated per category. We recognize that texts collected from the Web are often structure-rich, i.e., accompanied by various metadata. One can easily organize the corpus into a text-rich network, joining raw text documents with document attributes, high-quality phrases, label surface names as nodes, and their associations as edges. Such a network provides a holistic view of the corpus’ heterogeneous data sources and enables a joint optimization for network-based analysis and deep textual model training. We therefore propose a novel framework for minimally supervised categorization by learning from the text-rich network. Specifically, we jointly train two modules with different inductive biases – a text analysis module for text understanding and a network learning module for class-discriminative, scalable network learning. Each module generates pseudo training labels from the unlabeled document set, and both modules mutually enhance each other by co-training using pooled pseudo labels. We test our model on two real-world datasets. On the challenging e-commerce product categorization dataset with 683 categories, our experiments show that given only three seed documents per category, our framework can achieve an accuracy of about 92%, significantly outperforming all compared methods; our accuracy is only less than 2% away from the supervised BERT model trained on about 50K labeled documents. 
    more » « less
  2. Rubin, Stuart; Chen, Shu-Ching (Ed.)
    In this work, we use an unsupervised method for generating binary class labels in a novel context to create class labels for Medicare fraud detection. We examine how class imbalance influences the quality of these new labels and how it affects supervised classification. We use four different Medicare Part D fraud detection datasets, with the largest containing over 5 million instances. The other three datasets are sampled from the original dataset. Using Random Under-Sampling (RUS), we subsample from the majority class of the original data to produce three datasets with varying levels of class imbalance. To evaluate the performance of the newly created labels, we train a supervised classifier and evaluate its classification performance and compare it to an unsupervised anomaly detection method as a baseline. Our empirical findings indicate that the generated class labels are of high enough quality and enable effective supervised classifier training for fraud detection. Additionally, supervised classification with the new labels consistently outperforms the baseline used for comparison across all test scenarios. Further more, we observe an inverse relationship between class imbalance in the dataset and classifier performance, with AUPRC scores improving as the training dataset becomes more balanced. This work not only validates the efficacy of the synthesized class labels in labeling Medicare fraud but also shows its robustness across different degrees of class imbalance. 
    more » « less
  3. Flood mapping on Earth imagery is crucial for disaster management, but its efficacy is hampered by the lack of high-quality training labels. Given high-resolution Earth imagery with coarse and noisy training labels, a base deep neural network model, and a spatial knowledge base with label constraints, our problem is to infer the true high-resolution labels while training neural network parameters. Traditional methods are largely based on specific physical properties and thus fall short of capturing the rich domain constraints expressed by symbolic logic. Neural-symbolic models can capture rich domain knowledge, but existing methods do not address the unique spatial challenges inherent in flood mapping on high-resolution imagery. To fill this gap, we propose a spatial-logic-aware weakly supervised learning framework. Our framework integrates symbolic spatial logic inference into probabilistic learning in a weakly supervised setting. To reduce the time costs of logic inference on vast high-resolution pixels, we propose a multi-resolution spatial reasoning algorithm to infer true labels while training neural network parameters. Evaluations of real-world flood datasets show that our model outperforms several baselines in prediction accuracy. The code is available at https://github.com/spatialdatasciencegroup/SLWSL. 
    more » « less
  4. We study the problem of weakly supervised text classification, which aims to classify text documents into a set of pre-defined categories with category surface names only and without any annotated training document provided. Most existing classifiers leverage textual information in each document. However, in many domains, documents are accompanied by various types of metadata (e.g., authors, venue, and year of a research paper). These metadata and their combinations may serve as strong category indicators in addition to textual contents. In this paper, we explore the potential of using metadata to help weakly supervised text classification. To be specific, we model the relationships between documents and metadata via a heterogeneous information network. To effectively capture higher-order structures in the network, we use motifs to describe metadata combinations. We propose a novel framework, named MotifClass, which (1) selects category-indicative motif instances, (2) retrieves and generates pseudo-labeled training samples based on category names and indicative motif instances, and (3) trains a text classifier using the pseudo training data. Extensive experiments on real-world datasets demonstrate the superior performance of MotifClass to existing weakly supervised text classification approaches. Further analysis shows the benefit of considering higher-order metadata information in our framework. 
    more » « less
  5. We introduce a method that self trains (or bootstraps) neural relation and explanation classifiers. Our work expands the supervised approach of (Tang and Surdeanu, 2022), which jointly trains a relation classifier with an explanation classifier that identifies context words important for the relation at hand, to semi- supervised scenarios. In particular, our approach iteratively converts the explainable mod- els’ outputs to rules and applies them to unlabeled text to produce new annotations. Our evaluation on the TACRED dataset shows that our method outperforms the rule-based model we started from by 15 F1 points, outperforms traditional self-training that relies just on the relation classifier by 5 F1 points, and performs comparatively with the prompt-based approach of Sainz et al. (2021) (without requiring an additional natural language inference component). 
    more » « less