Ethanol dependency affects the health of more than 15 million adults in the United States of America. Honey bees have been used as a model for ethanol studies because of similarities in neural structure to vertebrates and their complex social behaviors. This study compares honey bee free-flight visitation to a food source after exposure to ethanol in aqueous sucrose. Individual bees were followed making six attachment visits to a test-station containing 1M sucrose. After attachment, honey bees were randomly assigned to one of five groups: 0%, 2.5%, 5%, 10% EtOH, or a staged increase in ethanol concentrations (2.5%, 5%, 10%). The results indicated that honey bees tolerate up to 2.5% EtOH without avoidance or altered behavior, and up to 5% EtOH without avoidance but with slower trips. At 10% ethanol, attrition was 75% by the 18th return trip. Bees in the staged increase in concentration group were more likely to return than bees that were offered 10% ethanol in sucrose solution after attachment. The results of this study imply that ethanol-induced tolerance to the effects of ethanol can be achieved in honey bees through incremental increase in EtOH but only in terms of attrition. Other measures of foraging efficiency did not show ethanol-induced tolerance. Understanding how ethanol tolerance develops in bees may provide insight into these processes in humans with minimized ethical considerations.
more »
« less
Preliminary Analysis of Genetic Markers for Functional Ethanol Tolerance in Honey Bees (Apis mellifera) Using a Free-Flying Paradigm
Honey bees are a commonly used species for alcohol research due to their genome being fully sequenced, their behavioral changes following consumption, and their preference for alcohol. The purpose of this article is to provide a preliminary examination of the genetic expression of heat shock protein 70 (HSP70) and big potassium ion channel protein (BKP) in honey bees following the consumption of either 0%, 2.5%, 5%, or 10% ethanol (EtOH) solutions. The foraging behaviors of the bees were observed and recorded through their return and drinking times. There were significant differences in the return and drinking times between some of the groups. The bees in the 10% condition took significantly longer to return compared to the other groups. Additionally, the bees in the 5% group spent significantly more time drinking compared to the bees in the control (0%) group. There were no significant differences in HSP70 or BKP between the different ethanol groups. Cumulatively, these findings suggest that, while bees may exhibit behavioral differences, the differences in gene expression may not be observed at the transcriptional level.
more »
« less
- Award ID(s):
- 1950805
- PAR ID:
- 10593189
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Insects
- Volume:
- 15
- Issue:
- 7
- ISSN:
- 2075-4450
- Page Range / eLocation ID:
- 494
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The use of invertebrate models has allowed researchers to examine the mechanisms behind alcoholism and its effects with a cost-effective system. In that respect, the honey bee is an ideal model species to study the effects of ethanol (EtOH) due to the behavioral and physiological similarities of honey bees with humans when alcohol is consumed. Although both ingestion and inhalation methods are used to dose subjects in insect EtOH model systems, there is little literature on the use of the EtOH vapor-exposure method for experiments using honey bees. The experiment presented here provides baseline data for a dose EtOH-hemolymph response curve when using EtOH vapor-inhalation dosing with honey bees (Apis mellifera). Bees were exposed to EtOH vapors for 0, 1, 2.5, or 5 min, and hemolymph was collected 1 min post EtOH exposure. Hemolymph samples were analyzed using gas chromatography (GC) for hemolymph EtOH concentration. The ethanol-hemolymph level of the bees increased linearly with exposure time. The results provide a dosing guide for hemolymph EtOH level in the honey bee model ethanol-inhalation system, and thus makes the honey bee model more robust.more » « less
-
Abstract Glyphosate is among the world's most commonly used herbicides in agriculture and weed control. The use of this agrochemical has unintended consequences on non-target organisms, such as honey bees (Apis mellifera L.), the Earth's most prominent insect pollinator. However, detailed understanding of the biological effects in bees in response to sub-lethal glyphosate exposure is still limited. In this study, 1H NMR-based metabolomics was performed to investigate whether oral exposure to an environmentally realistic concentration (7.12 mg L−1) of glyphosate affects the regulation of honey bee metabolites in 2, 5, and 10 days. On Day 2 of glyphosate exposure, the honey bees showed significant downregulation of several essential amino acids, including leucine, lysine, valine, and isoleucine. This phenomenon indicates that glyphosate causes an obvious metabolic perturbation when the honey bees are subjected to the initial caging process. The mid-term (Day 5) results showed negligible metabolite-level perturbation, which indicated the low glyphosate impact on active honeybees. However, the long-term (Day 10) data showed evident separation between the control and experimental groups in the principal component analysis (PCA). This separation is the result of the combinatorial changes of essential amino acids such as threonine, histidine, and methionine, while the non-essential amino acids glutamine and proline as well as the carbohydrate sucrose were all downregulated. In summary, our study demonstrates that although no significant behavioral differences were observed in honey bees under sub-lethal doses of glyphosate, metabolomic level perturbation can be observed under short-term exposure when met with other environmental stressors or long-term exposure.more » « less
-
Abstract The thermally dynamic nearshore Beaufort Sea, Alaska, is experiencing climate change-driven temperature increases. Measuring thermal tolerance of broad whitefish (Coregonus nasus) and saffron cod (Eleginus gracilis), both important species in the Arctic ecosystem, will enhance understanding of species-specific thermal tolerances. The objectives of this study were to determine the extent that acclimating broad whitefish and saffron cod to 5°C and 15°C changed their critical thermal maximum (CTmax) and HSP70 protein and mRNA expression in brain, muscle and liver tissues. After acclimation to 5°C and 15°C, the species were exposed to a thermal ramping rate of 3.4°C · h−1 before quantifying the CTmax and HSP70 protein and transcript concentrations. Broad whitefish and saffron cod acclimated to 15°C had a significantly higher mean CTmax (27.3°C and 25.9°C, respectively) than 5°C-acclimated fish (23.7°C and 23.2°C, respectively), which is consistent with trends in CTmax between higher and lower acclimation temperatures. There were species-specific differences in thermal tolerance with 15°C-acclimated broad whitefish having higher CTmax and HSP70 protein concentrations in liver and muscle tissues than saffron cod at both acclimation temperatures. Tissue-specific differences were quantified, with brain and muscle tissues having the highest and lowest HSP70 protein concentrations, respectively, for both species and acclimation temperatures. The differences in broad whitefish CTmax between the two acclimation temperatures could be explained with brain and liver tissues from 15°C acclimation having higher HSP70a-201 and HSP70b-201 transcript concentrations than control fish that remained in lab-acclimation conditions of 8°C. The shift in CTmax and HSP70 protein and paralogous transcripts demonstrate the physiological plasticity that both species possess in responding to two different acclimation temperatures. This response is imperative to understand as aquatic temperatures continue to elevate.more » « less
-
Insecticides are a major tool for controlling pest species. Their widespread use results in damage to non-targeted insects, with honey bees particularly at risk. During foraging, honey bees learn and remember floral charac teristics that are associated with food. As insect pollinators, honey bees inadvertently contact chemicals which can have multiple negative impacts. The toxicity of two insecticides from different classes, ethion (47.79 mg a.i. L − 1 ) and hexaflumuron (500 mg a.i.L − 1 ), on learning, memory, and sensory perception were evaluated. We found that oral exposure to ethion had adverse effects on learned proboscis extension toward reward-associated odors and colors. In addition, we showed reduced sucrose consumption and sucrose responsiveness after expo sure. Hexaflumuron also impaired olfactory learning and memory and decreased responsiveness to sucrose and water. Exposure to sub-lethal concentration of the cholinergic organophosphate insecticide, ethion (47.79 mg a.i. L − 1 ), and the field-recommended concentration of hexaflumuron (500 mg a.i.L − 1 ), significantly impaired behavior involved in foraging. Our results suggest that several behavioral characteristics of honey bees be evaluated when testing an insecticide rather than relying on just one behavioral measure.more » « less
An official website of the United States government

