Ethanol dependency affects the health of more than 15 million adults in the United States of America. Honey bees have been used as a model for ethanol studies because of similarities in neural structure to vertebrates and their complex social behaviors. This study compares honey bee free-flight visitation to a food source after exposure to ethanol in aqueous sucrose. Individual bees were followed making six attachment visits to a test-station containing 1M sucrose. After attachment, honey bees were randomly assigned to one of five groups: 0%, 2.5%, 5%, 10% EtOH, or a staged increase in ethanol concentrations (2.5%, 5%, 10%). The results indicated that honey bees tolerate up to 2.5% EtOH without avoidance or altered behavior, and up to 5% EtOH without avoidance but with slower trips. At 10% ethanol, attrition was 75% by the 18th return trip. Bees in the staged increase in concentration group were more likely to return than bees that were offered 10% ethanol in sucrose solution after attachment. The results of this study imply that ethanol-induced tolerance to the effects of ethanol can be achieved in honey bees through incremental increase in EtOH but only in terms of attrition. Other measures of foraging efficiency did not show ethanol-induced tolerance. Understanding how ethanol tolerance develops in bees may provide insight into these processes in humans with minimized ethical considerations.
more »
« less
Quantitative Analysis of Honey Bee Blood-Ethanol Levels Following Exposure to Ethanol Vapors
The use of invertebrate models has allowed researchers to examine the mechanisms behind alcoholism and its effects with a cost-effective system. In that respect, the honey bee is an ideal model species to study the effects of ethanol (EtOH) due to the behavioral and physiological similarities of honey bees with humans when alcohol is consumed. Although both ingestion and inhalation methods are used to dose subjects in insect EtOH model systems, there is little literature on the use of the EtOH vapor-exposure method for experiments using honey bees. The experiment presented here provides baseline data for a dose EtOH-hemolymph response curve when using EtOH vapor-inhalation dosing with honey bees (Apis mellifera). Bees were exposed to EtOH vapors for 0, 1, 2.5, or 5 min, and hemolymph was collected 1 min post EtOH exposure. Hemolymph samples were analyzed using gas chromatography (GC) for hemolymph EtOH concentration. The ethanol-hemolymph level of the bees increased linearly with exposure time. The results provide a dosing guide for hemolymph EtOH level in the honey bee model ethanol-inhalation system, and thus makes the honey bee model more robust.
more »
« less
- Award ID(s):
- 1950805
- PAR ID:
- 10593190
- Publisher / Repository:
- University of California eScholarship
- Date Published:
- Journal Name:
- International Journal of Comparative Psychology
- Volume:
- 38
- Issue:
- 1
- ISSN:
- 2168-3344
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Flying social insects can provide model systems for in-flight interactions in computationally-constrained aerial robot swarms. The social interactions in flying insects may be chemically modulated and quantified via recent measurement advancements able to simultaneously make precise measurements of insect wing and body motions. This paper presents the first in-flight quantitative measurements of ethanol-exposed honey bee body and wing kinematics in archival literature. Four high-speed cameras (9000 frames/sec) were used to record the wing and body motions of flying insects (Apis mellifera) and automated analysis was used to extract 9000 frame/sec measurements of honey bees’ wing and body motions through data association, hull reconstruction, and segmentation. The kinematic changes induced by exposure to incremental ethanol concentrations from 0% to 5% were studied using statistical analysis tools. Analysis considered trial-wise mean and maximum values and gross wingstroke parameters, and tested deviations for statistical significance using Welch’s t-test and Cohen’s d test. The results indicate a decrease in maximal heading and pitch rates of the body, and that roll rate is affected at high concentrations (5%). The wingstroke effects include a stroke frequency decrease and stroke amplitude increase for 2.5% or greater concentrations, gradual stroke inclination angle increase up to 2.5% concentration, and a more planar wingstroke with increasing concentration according to bulk wingstroke analysis. These ethanol-exposure effects provide a basis to separate ethanol exposure and neighbor effects in chemically mediated interaction studies.more » « less
-
Honey bees are a commonly used species for alcohol research due to their genome being fully sequenced, their behavioral changes following consumption, and their preference for alcohol. The purpose of this article is to provide a preliminary examination of the genetic expression of heat shock protein 70 (HSP70) and big potassium ion channel protein (BKP) in honey bees following the consumption of either 0%, 2.5%, 5%, or 10% ethanol (EtOH) solutions. The foraging behaviors of the bees were observed and recorded through their return and drinking times. There were significant differences in the return and drinking times between some of the groups. The bees in the 10% condition took significantly longer to return compared to the other groups. Additionally, the bees in the 5% group spent significantly more time drinking compared to the bees in the control (0%) group. There were no significant differences in HSP70 or BKP between the different ethanol groups. Cumulatively, these findings suggest that, while bees may exhibit behavioral differences, the differences in gene expression may not be observed at the transcriptional level.more » « less
-
Abstract Glyphosate is among the world's most commonly used herbicides in agriculture and weed control. The use of this agrochemical has unintended consequences on non-target organisms, such as honey bees (Apis mellifera L.), the Earth's most prominent insect pollinator. However, detailed understanding of the biological effects in bees in response to sub-lethal glyphosate exposure is still limited. In this study, 1H NMR-based metabolomics was performed to investigate whether oral exposure to an environmentally realistic concentration (7.12 mg L−1) of glyphosate affects the regulation of honey bee metabolites in 2, 5, and 10 days. On Day 2 of glyphosate exposure, the honey bees showed significant downregulation of several essential amino acids, including leucine, lysine, valine, and isoleucine. This phenomenon indicates that glyphosate causes an obvious metabolic perturbation when the honey bees are subjected to the initial caging process. The mid-term (Day 5) results showed negligible metabolite-level perturbation, which indicated the low glyphosate impact on active honeybees. However, the long-term (Day 10) data showed evident separation between the control and experimental groups in the principal component analysis (PCA). This separation is the result of the combinatorial changes of essential amino acids such as threonine, histidine, and methionine, while the non-essential amino acids glutamine and proline as well as the carbohydrate sucrose were all downregulated. In summary, our study demonstrates that although no significant behavioral differences were observed in honey bees under sub-lethal doses of glyphosate, metabolomic level perturbation can be observed under short-term exposure when met with other environmental stressors or long-term exposure.more » « less
-
Octopamine has broad roles within invertebrate nervous systems as a neurohormone, neurotransmitter and neuromodulator. It orchestrates foraging behavior in many insect taxa via effects on feeding, gustatory responsiveness and appetitive learning. Knowledge of how this biogenic amine regulates bee physiology and behavior is based largely on study of a single species, the honey bee, Apis mellifera. Until recently, its role in the foraging ecology and social organization of diverse bee taxa had been unexplored. Bumble bees (Bombus spp.) are a model for research into the neural basis of foraging and learning, but whether octopamine similarly affects sensory and cognitive performance in this genus is not known. To address this gap, we explored the effects of octopamine on gustatory responsiveness and associative learning in Bombus impatiens via conditioning of the Proboscis Extension Reflex (PER) using a visual (color) cue. We found that octopamine had similar effects on bumble bee behavior as previously reported in honey bees, however, higher doses were required to induce these effects. At this higher dose, octopamine lowered bees’ gustatory responsiveness and appeared to enhance associative learning performance during the early phase of our experiment. Adding to recent studies on stingless bees (Meliponini), these findings support the idea that octopamine’s role in reward perception and processing is broadly conserved across Apidae, while pointing towards some differences across systems worth exploring further.more » « less
An official website of the United States government

