skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 3, 2026

Title: Phosphate-enabled mechanochemical PFAS destruction for fluoride reuse
Abstract Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are persistent, bioaccumulative and anthropogenic pollutants that have attracted the attention of the public and private sectors because of their adverse impact on human health1. Although various technologies have been deployed to degrade PFASs with a focus on non-polymeric functionalized compounds (perfluorooctanoic acid and perfluorooctanesulfonic acid)2–4, a general PFAS destruction method coupled with fluorine recovery for upcycling is highly desirable. Here we disclose a protocol that converts multiple classes of PFAS, including the fluoroplastics polytetrafluoroethylene and polyvinylidene fluoride, into high-value fluorochemicals. To achieve this, PFASs were reacted with potassium phosphate salts under solvent-free mechanochemical conditions, a mineralization process enabling fluorine recovery as KF and K2PO3F for fluorination chemistry. The phosphate salts can be recovered for reuse, implying no detrimental impact on the phosphorus cycle. Therefore, PFASs are not only destructible but can now contribute to a sustainable circular fluorine economy.  more » « less
Award ID(s):
2400056
PAR ID:
10593211
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Springer Nature
Date Published:
Journal Name:
Nature
Volume:
640
Issue:
8057
ISSN:
0028-0836
Page Range / eLocation ID:
100 to 106
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Nanoelectrochemistry allows for the investigation of the interaction of per‐ and polyfluoroalkyl substances (PFASs) with silver nanoparticles (AgNPs) and the elucidation of the binding behaviour of PFASs to nanoscale surfaces with high sensitivity. Mechanistic studies supported by single particle collision electrochemistry (SPCE), spectroscopic and density functional theory (DFT) calculations indicate the capability of polyfluorooctane sulfonic acid (PFOS), a representative PFAS, to selectively bind and induce aggregation of AgNPs. Single‐particle measurements provide identification of the “discrete” AgNPs agglomeration (e.g. 2–3 NPs) formed through the inter‐particles F−F interactions and the selective replacement of the citrate stabilizer by the sulfonate of the PFOS. Such interactions are characteristic only for long chain PFAS (‐SO3) providing a means to selectively identify these substances down to ppt levels. Measuring and understanding the interactions of PFAS at nanoscale surfaces are crucial for designing ultrasensitive methods for detection and for modelling and predicting their interaction in the environment. 
    more » « less
  2. Although most manufacturers stopped using long-chain per- and polyfluoroalkyl substances (PFASs), including perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), short-chain PFASs are still widely employed. Short-chain PFASs are less known in terms of toxicity and have different adsorption behavior from long-chain PFASs. Previous studies have shown electrostatic interaction with the adsorbent to be the dominant mechanism for the removal of short-chain PFASs. In this study, we designed a high charge density cationic quaternized nanocellulose (QNC) to enhance the removal of both short- and long-chain PFASs from contaminated water. Systematic batch adsorption tests were conducted using the QNC adsorbent to compare its efficiency against PFASs with varying chain lengths and functional groups. From the kinetic study, PFBA (perfluorobutanoic acid), PFBS (perfluorobutanesulfonic acid) and PFOS showed rapid adsorption rates, which reached near equilibrium values (>95% of removal) between 1 min to 15 min, while PFOA required a relatively longer equilibration time of 2 h (it obtained 90% of removal within 15 min). According to the isotherm results, the maximum adsorption capacity ( Q m ) of the QNC adsorbent exhibited the following trend: PFOS ( Q m = 559 mg g −1 or 1.12 mmol g −1 ) > PFOA ( Q m = 405 mg g −1 or 0.98 mmol g −1 ) > PFBS ( Q m = 319 mg g −1 or 1.06 mmol g −1 ) > PFBA ( Q m = 121 mg g −1 or 0.57 mmol g −1 ). This adsorption order generally matches the hydrophobicity trend among four PFASs associated with both PFAS chain length and functional group. In competitive studies, pre-adsorbed short-chain PFASs were quickly desorbed by long-chain PFASs, suggesting that the hydrophobicity of the molecule played an important role in the adsorption process on to QNC. Finally, the developed QNC adsorbent was tested to treat PFAS-contaminated groundwater, which showed excellent removal efficiency (>95%) for long-chain PFASs (C7–C9) even at a low adsorbent dose of 32 mg L −1 . However, short-chain PFASs ( i.e. , PFBA and perfluoropentanoic acid (PFPeA)) were poorly removed by the QNC adsorbent (0% and 10% removal, respectively) due to competing constituents in the groundwater matrix. This was further confirmed by controlled experiments that revealed a drop in the performance of QNC to remove short-chain PFASs at elevated ionic strength (NaCl), but not for long-chain PFASs, likely due to charge neutralization of the anionic functional group of PFASs by inorganic cations. Overall, the QNC adsorbent featured improved PFAS adsorption capacity at almost two-fold of PFAS removal by granular activated carbons, especially for short-chain PFASs. We believe, QNC can complement the use of common treatment methods such as activated carbon or ionic exchange resin to remove a wide range of PFAS pollutants, heading towards the complete remediation of PFAS contamination. 
    more » « less
  3. Abstract Per‐ and polyfluoroalkyl substances (PFAS) are robust “forever” chemicals that have become global environmental contaminants due to their inability to degrade using traditional techniques. In addition to the persistent nature of PFAS, the structural and functional diversity in PFAS creates a unique challenge in identification and remediation. Their identification is further complicated by the absence of standards for many PFAS. This work is aimed at developing a protocol for computing and establishing accurate19F NMR chemical shifts for PFAS using density functional theory (DFT), which can aid in the identification of PFAS. The impact of solvation and basis sets was evaluated by comparing the computed data with the experimental measurements. Results showed the addition of dispersion corrections in the methodology improve the accuracy of calculated NMR parameters within 4 ppm of the experimental values. Adding a second diffuse function and additional polarization did not improve the accuracy, likely because of the electronegativity of fluorine which does not allow the electron density of fluorine atoms to be polarized. The inclusion of various implicit solvation (DMSO, chloroform, and water) yielded negligible differences in accuracy, and were overall less accurate than the gas phase calculations. The most accurate methodology was then applied to more environmentally relevant PFAS, and the impact of helical nature on the NMR signatures was evaluated. The implication of this work is to be able to improve the identification of structurally diverse PFAS using the19F NMR. 
    more » « less
  4. Poly‐ and perfluoroalkyl substances (PFAS) are a class of persistent organic pollutants whose high stability and appreciable water solubility have led to near‐global contamination. PFAS are bioaccumulative toxins that have been linked to a myriad of disorders and have been detected nearly universally in human blood. Liquid chromatography‐tandem mass spectrometry is the most frequent method used for quantitation, though this typically only measures a few dozen of the >14 000 known PFAS and has been shown to account for a small portion of the total organic fluorine present. Sum parameter methods such as total, extractable, and adsorbable organic fluorine have emerged as alternative measurements for PFAS determination. Combustion ion chromatography has become the preferred method for organofluorine measurement where the sorbent or extract containing PFAS is combusted and the emitted hydrofluoric acid (HF) is a measure of the cumulative organofluorine present. Herein we critically review the types of organofluorine measurement, their separation from the sample matrix, and key parameters of the analytical instrument that affect sensitivity, reproducibility, and recovery with regards to PFAS analysis. 
    more » « less
  5. Abstract Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are now widely found in aquatic ecosystems, including sources of drinking water and portable water, due to their increasing prevalence. Among different PFAS treatment or separation technologies, nanofiltration (NF) and reverse osmosis (RO) both yield high rejection efficiencies (>95%) of diverse PFAS in water; however, both technologies are affected by many intrinsic and extrinsic factors. This study evaluated the rejection of PFAS of different carbon chain length (e.g., PFOA and PFBA) by two commercial RO and NF membranes under different operational conditions (e.g., applied pressure and initial PFAS concentration) and feed solution matrixes, such as pH (4–10), salinity (0‐ to 1000‐mM NaCl), and organic matters (0–10 mM). We further performed principal component analysis (PCA) to demonstrate the interrelationships of molecular weight (213–499 g·mol−1), membrane characteristics (RO or NF), feed water matrices, and operational conditions on PFAS rejection. Our results confirmed that size exclusion is a primary mechanism of PFAS rejection by RO and NF, as well as the fact that electrostatic interactions are important when PFAS molecules have sizes less than the NF membrane pores. Practitioner PointsTwo commercial RO and NF membranes were both evaluated to remove 10 different PFAS.High transmembrane pressures facilitated permeate recovery and PFAS rejection by RO.Electrostatic repulsion and pore size exclusion are dominant rejection mechanisms for PFAS removal.pH, ionic strength, and organic matters affected PFAS rejection.Mechanisms of PFAS rejection with RO/NF membranes were explained by PCA analysis. 
    more » « less