Abstract Probabilistic graphical models provide a powerful tool to describe complex statistical structure, with many real-world applications in science and engineering from controlling robotic arms to understanding neuronal computations. A major challenge for these graphical models is that inferences such as marginalization are intractable for general graphs. These inferences are often approximated by a distributed message-passing algorithm such as Belief Propagation, which does not always perform well on graphs with cycles, nor can it always be easily specified for complex continuous probability distributions. Such difficulties arise frequently in expressive graphical models that include intractable higher-order interactions. In this paper we define the Recurrent Factor Graph Neural Network (RF-GNN) to achieve fast approximate inference on graphical models that involve many-variable interactions. Experimental results on several families of graphical models demonstrate the out-of-distribution generalization capability of our method to different sized graphs, and indicate the domain in which our method outperforms Belief Propagation (BP). Moreover, we test the RF-GNN on a real-world Low-Density Parity-Check dataset as a benchmark along with other baseline models including BP variants and other GNN methods. Overall we find that RF-GNNs outperform other methods under high noise levels.
more »
« less
PhyloJunction: A Computational Framework for Simulating, Developing, and Teaching Evolutionary Models
Abstract We introduce PhyloJunction, a computational framework designed to facilitate the prototyping, testing, and characterization of evolutionary models. PhyloJunction is distributed as an open-source Python library that can be used to implement a variety of models, thanks to its flexible graphical modeling architecture and dedicated model specification language. Model design and use are exposed to users via command-line and graphical interfaces, which integrate the steps of simulating, summarizing, and visualizing data. This article describes the features of PhyloJunction—which include, but are not limited to, a general implementation of a popular family of phylogenetic diversification models—and, moving forward, how it may be expanded to not only include new models, but to also become a platform for conducting and teaching statistical learning.
more »
« less
- Award ID(s):
- 2040347
- PAR ID:
- 10593268
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Systematic Biology
- Volume:
- 73
- Issue:
- 6
- ISSN:
- 1063-5157
- Format(s):
- Medium: X Size: p. 1051-1060
- Size(s):
- p. 1051-1060
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract SummaryMolecular mechanisms of biological functions and disease processes are exceptionally complex, and our ability to interrogate and understand relationships is becoming increasingly dependent on the use of computational modeling. We have developed “BioModME,” a standalone R-based web application package, providing an intuitive and comprehensive graphical user interface to help investigators build, solve, visualize, and analyze computational models of complex biological systems. Some important features of the application package include multi-region system modeling, custom reaction rate laws and equations, unit conversion, model parameter estimation utilizing experimental data, and import and export of model information in the Systems Biology Matkup Language format. The users can also export models to MATLAB, R, and Python languages and the equations to LaTeX and Mathematical Markup Language formats. Other important features include an online model development platform, multi-modality visualization tool, and efficient numerical solvers for differential-algebraic equations and optimization. Availability and implementationAll relevant software information including documentation and tutorials can be found at https://mcw.marquette.edu/biomedical-engineering/computational-systems-biology-lab/biomodme.php. Deployed software can be accessed at https://biomodme.ctsi.mcw.edu/. Source code is freely available for download at https://github.com/MCWComputationalBiologyLab/BioModME.more » « less
-
Motivated by modern applications in which one constructs graphical models based on a very large number of features, this paper introduces a new class of cluster-based graphical models, in which variable clustering is applied as an initial step for reducing the dimension of the feature space. We employ model assisted clustering, in which the clusters contain features that are similar to the same unobserved latent variable. Two different cluster-based Gaussian graphical models are considered: the latent variable graph, corresponding to the graphical model associated with the unobserved latent variables, and the cluster-average graph, corresponding to the vector of features averaged over clusters. Our study reveals that likelihood based inference for the latent graph, not analyzed previously, is analytically intractable. Our main contribution is the development and analysis of alternative estimation and inference strategies, for the precision matrix of an unobservable latent vector Z. We replace the likelihood of the data by an appropriate class of empirical risk functions, that can be specialized to the latent graphical model and to the simpler, but under-analyzed, cluster-average graphical model. The estimators thus derived can be used for inference on the graph structure, for instance on edge strength or pattern recovery. Inference is based on the asymptotic limits of the entry-wise estimates of the precision matrices associated with the conditional independence graphs under consideration. While taking the uncertainty induced by the clustering step into account, we establish Berry-Esseen central limit theorems for the proposed estimators. It is noteworthy that, although the clusters are estimated adaptively from the data, the central limit theorems regarding the entries of the estimated graphs are proved under the same conditions one would use if the clusters were known in advance. As an illustration of the usage of these newly developed inferential tools, we show that they can be reliably used for recovery of the sparsity pattern of the graphs we study, under FDR control, which is verified via simulation studies and an fMRI data analysis. These experimental results confirm the theoretically established difference between the two graph structures. Furthermore, the data analysis suggests that the latent variable graph, corresponding to the unobserved cluster centers, can help provide more insight into the understanding of the brain connectivity networks relative to the simpler, average-based, graph.more » « less
-
Templated graphical models (TGMs) encode model structure using rules that capture recurring relationships between multiple random variables. While the rules in TGMs are interpretable, it is not clear how they can be used to generate explanations for the individual predictions of the model. Further, learning these rules from data comes with high computational costs: it typically requires an expensive combinatorial search over the space of rules and repeated optimization over rule weights. In this work, we propose a new structure learning algorithm, Explainable Structured Model Search (ESMS), that learns a templated graphical model and an explanation framework for its predictions. ESMS uses a novel search procedure to efficiently search the space of models and discover models that trade-off predictive accuracy and explainability. We introduce the notion of relational stability and prove that our proposed explanation framework is stable. Further, our proposed piecewise pseudolikelihood (PPLL) objective does not require re-optimizing the rule weights across models during each iteration of the search. In our empirical evaluation on three realworld datasets, we show that our proposed approach not only discovers models that are explainable, but also significantly outperforms existing state-out-the-art structure learning approaches.more » « less
-
Abstract Although macaques and marmosets are both primates of choice for studying the brain mechanisms of cognition, they differ in key aspects of anatomy and behavior. Interestingly, recent connectomic analysis revealed that strong top-down projections from the prefrontal cortex to the posterior parietal cortex, present in macaques and important for executive function, are absent in marmosets. Here, we propose a consensus mapping that bridges the two species’ cortical atlases and allows for direct area-to-area comparison of their connectomes, which are then used to build comparative computational large-scale modeling of the frontoparietal circuit for working memory. We found that the macaque model exhibits resilience against distractors, a prerequisite for normal working memory function. By contrast, the marmoset model is sensitive to distractibility commonly observed behaviorally in this species. Surprisingly, this contrasting trend can be swapped by scaling intrafrontal and frontoparietal connections. Finally, the relevance to primate ethology and evolution is discussed. Graphical Abstract HighlightsConsensus mapping allows for directly comparing macaque and marmoset connectomes.Connectomes and spine counts constrain large-scale models of working memory.The marmoset model is susceptible to distraction, but not the macaque.Our results capture real life difference with regard to distraction.more » « less
An official website of the United States government
