Probabilistic graphical models, such as Markov random fields (MRF), exploit dependencies among random variables to model a rich family of joint probability distributions. Inference algorithms, such as belief propagation (BP), can effectively compute the marginal posteriors for decision making. Nonetheless, inferences involve sophisticated probability calculations and are difficult for humans to interpret. Among all existing explanation methods for MRFs, no method is designed for fair attributions of an inference outcome to elements on the MRF where the inference takes place. Shapley values provide rigorous attributions but so far have not been studied on MRFs. We thus define Shapley values for MRFs to capture both probabilistic and topological contributions of the variables on MRFs. We theoretically characterize the new definition regarding independence, equal contribution, additivity, and submodularity. As brute-force computation of the Shapley values is challenging, we propose GraphShapley, an approximation algorithm that exploits the decomposability of Shapley values, the structure of MRFs, and the iterative nature of BP inference to speed up the computation. In practice, we propose meta-explanations to explain the Shapley values and make them more accessible and trustworthy to human users. On four synthetic and nine real-world MRFs, we demonstrate that GraphShapley generates sensible and practical explanations. 
                        more » 
                        « less   
                    
                            
                            Generalization of graph network inferences in higher-order graphical models
                        
                    
    
            Abstract Probabilistic graphical models provide a powerful tool to describe complex statistical structure, with many real-world applications in science and engineering from controlling robotic arms to understanding neuronal computations. A major challenge for these graphical models is that inferences such as marginalization are intractable for general graphs. These inferences are often approximated by a distributed message-passing algorithm such as Belief Propagation, which does not always perform well on graphs with cycles, nor can it always be easily specified for complex continuous probability distributions. Such difficulties arise frequently in expressive graphical models that include intractable higher-order interactions. In this paper we define the Recurrent Factor Graph Neural Network (RF-GNN) to achieve fast approximate inference on graphical models that involve many-variable interactions. Experimental results on several families of graphical models demonstrate the out-of-distribution generalization capability of our method to different sized graphs, and indicate the domain in which our method outperforms Belief Propagation (BP). Moreover, we test the RF-GNN on a real-world Low-Density Parity-Check dataset as a benchmark along with other baseline models including BP variants and other GNN methods. Overall we find that RF-GNNs outperform other methods under high noise levels. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1707400
- PAR ID:
- 10473838
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Journal of Applied and Computational Topology
- Volume:
- 8
- Issue:
- 5
- ISSN:
- 2367-1726
- Format(s):
- Medium: X Size: p. 1231-1256
- Size(s):
- p. 1231-1256
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)Belief propagation is a widely used message passing method for the solution of probabilistic models on networks such as epidemic models, spin models, and Bayesian graphical models, but it suffers from the serious shortcoming that it works poorly in the common case of networks that contain short loops. Here, we provide a solution to this long-standing problem, deriving a belief propagation method that allows for fast calculation of probability distributions in systems with short loops, potentially with high density, as well as giving expressions for the entropy and partition function, which are notoriously difficult quantities to compute. Using the Ising model as an example, we show that our approach gives excellent results on both real and synthetic networks, improving substantially on standard message passing methods. We also discuss potential applications of our method to a variety of other problems.more » « less
- 
            The evolution of molecular and phenotypic traits is commonly modelled using Markov processes along a phylogeny. This phylogeny can be a tree, or a network if it includes reticulations, representing events such as hybridization or admixture. Computing the likelihood of data observed at the leaves is costly as the size and complexity of the phylogeny grows. Efficient algorithms exist for trees, but cannot be applied to networks. We show that a vast array of models for trait evolution along phylogenetic networks can be reformulated as graphical models, for which efficient belief propagation algorithms exist. We provide a brief review of belief propagation on general graphical models, then focus on linear Gaussian models for continuous traits. We show how belief propagation techniques can be applied for exact or approximate (but more scalable) likelihood and gradient calculations, and prove novel results for efficient parameter inference of some models. We highlight the possible fruitful interactions between graphical models and phylogenetic methods. For example, approximate likelihood approaches have the potential to greatly reduce computational costs for phylogenies with reticulations. This article is part of the theme issue ‘“A mathematical theory of evolution”: phylogenetic models dating back 100 years’.more » « less
- 
            Uncertainty Quantification (UQ) is vital for decision makers as it offers insights into the potential reliability of data and model, enabling more informed and risk-aware decision-making. Graphical models, capable of representing data with complex dependencies, are widely used across domains. Existing sampling-based UQ methods are unbiased but cannot guarantee convergence and are time-consuming on large-scale graphs. There are fast UQ methods for graphical models with closed-form solutions and convergence guarantee but with uncertainty underestimation. We propose LinUProp, a UQ method that utilizes a novel linear propagation of uncertainty to model uncertainty among related nodes additively instead of multiplicatively, to offer linear scalability, guaranteed convergence, and closed-form solutions without underestimating uncertainty. Theoretically, we decompose the expected prediction error of the graphical model and prove that the uncertainty computed by LinUProp is the generalized variance component of the decomposition. Experimentally, we demonstrate that LinUProp is consistent with the sampling-based method but with linear scalability and fast convergence. Moreover, LinUProp outperforms competitors in uncertainty-based active learning on four real-world graph datasets, achieving higher accuracy with a lower labeling budget.more » « less
- 
            Community detection in graphs can be solved via spectral methods or posterior inference under certain probabilistic graphical models. Focusing on random graph families such as the stochastic block model, recent research has unified both approaches and identified both statistical and computational detection thresholds in terms of the signal-to-noise ratio. By recasting community detection as a node-wise classification problem on graphs, we can also study it from a learning perspective. We present a novel family of Graph Neural Networks (GNNs) for solving community detection problems in a supervised learning setting. We show that, in a data-driven manner and without access to the underlying generative models, they can match or even surpass the performance of the belief propagation algorithm on binary and multiclass stochastic block models, which is believed to reach the computational threshold in these cases. In particular, we propose to augment GNNs with the non-backtracking operator defined on the line graph of edge adjacencies. The GNNs are achieved good performance on real-world datasets. In addition, we perform the first analysis of the optimization landscape of using (linear) GNNs to solve community detection problems, demonstrating that under certain simplifications and assumptions, the loss value at any local minimum is close to the loss value at the global minimum/minima.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
