Abstract Eddy viscosity is employed throughout the majority of numerical fluid dynamical models, and has been the subject of a vigorous body of research spanning a variety of disciplines. It has long been recognized that the proper description of eddy viscosity uses tensor mathematics, but in practice it is almost always employed as a scalar due to uncertainty about how to constrain the extra degrees of freedom and physical properties of its tensorial form. This manuscript borrows techniques from outside the realm of geophysical fluid dynamics to consider the eddy viscosity tensor using its eigenvalues and eigenvectors, establishing a new framework by which tensorial eddy viscosity can be tested. This is made possible by a careful analysis of an operation called tensor unrolling, which casts the eigenvalue problem for a fourth‐order tensor into a more familiar matrix‐vector form, whereby it becomes far easier to understand and manipulate. New constraints are established for the eddy viscosity coefficients that are guaranteed to result in energy dissipation, backscatter, or a combination of both. Finally, a testing protocol is developed by which tensorial eddy viscosity can be systematically evaluated across a wide range of fluid regimes.
more »
« less
Data-Driven Strategy for Enhanced Subgrid Modeling of Reaction-Rate Using Linear-Eddy Model for Large Eddy Simulation
- Award ID(s):
- 2301829
- PAR ID:
- 10593397
- Publisher / Repository:
- American Institute of Aeronautics and Astronautics
- Date Published:
- ISBN:
- 978-1-62410-723-8
- Format(s):
- Medium: X
- Location:
- Orlando, FL
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We use an interannually forced version of the Parallel Ocean Program, configured to resolve mesoscale eddies, to close the global eddy potential energy (EPE) budget associated with temperature variability. By closing the EPE budget, we are able to properly investigate the role of diabatic processes in modulating mesoscale energetics in the context of other processes driving eddy–mean flow interactions. A Helmholtz decomposition of the eddy heat flux field into divergent and rotational components is applied to estimate the baroclinic conversion from mean to eddy potential energy. In doing so, an approximate two-way balance between the “divergent” baroclinic conversion and upgradient vertical eddy heat fluxes in the ocean interior is revealed, in accordance with baroclinic instability and the relaxation of isopycnal slopes. However, in the mixed layer, the EPE budget is greatly modulated by diabatic mixing, with air–sea interactions and interior diffusion playing comparable roles. Globally, this accounts for ∼60% of EPE converted to EKE (eddy kinetic energy), with the remainder being dissipated by air–sea interactions and interior mixing. A seasonal composite of baroclinic energy conversions shows that the strongest EPE to EKE conversion occurs during the summer in both hemispheres. The seasonally varying diabatic processes in the upper ocean are further shown to be closely linked to this EPE–EKE conversion seasonality, but with a lead. The peak energy dissipation through vertical mixing occurs ahead of the minimum EKE generation by 1–2 months.more » « less
-
Abstract. Long-term tall-tower eddy-covariance (EC) measurements have been recently established in three European pilot cities as part of the ICOS-Cities project. We conducted a comparison of EC software to ensure a reliable generation of interoperable flux estimates, which is the prerequisite for avoiding methodological biases and improving the comparability of the results. We analyzed datasets covering 5 months collected from EC tall-tower installations located in urbanized areas of Munich, Zurich, and Paris. Fluxes of sensible heat, latent heat, and CO2 were calculated using three software packages (i.e., TK3, EddyPro, and eddy4R) to assess the uncertainty of flux estimations attributed to differences in implemented postprocessing schemes. A very good agreement on the mean values and standard deviations was found across all three sites, which can probably be attributed to a uniform instrumentation, data acquisition, and preprocessing. The overall comparison of final flux time series products showed a good but not yet perfect agreement among the three software packages. TK3 and EddyPro both calculated fluxes with low-frequency spectral correction, resulting in better agreement than between TK3 and the eddy4R workflow with disabled low-frequency spectral treatment. These observed flux discrepancies indicate the crucial role of treating low-frequency spectral loss in flux estimation for tall-tower EC systems.more » « less
-
A novel formulation of the vortex particle method (VPM) is developed for large-eddy simulation (LES) in a meshless scheme that is numerically stable. A new set of VPM governing equations are derived from the LES-filtered Navier–Stokes equations. The new equations reinforce the conservation of angular momentum by resizing vortex elements subject to vortex stretching. In addition to the VPM reformulation, a new anisotropic dynamic model of subfilter-scale (SFS) vortex stretching is developed. This SFS model is well suited for turbulent flows with coherent vortical structures, where the predominant cascade mechanism is vortex stretching. The mean and fluctuating components of turbulent flow and Reynolds stresses are validated through the simulation of a turbulent round jet. The computational efficiency of the scheme is showcased in the simulation of an aircraft rotor in hover, showing our meshless LES to be 100 times faster than a mesh-based LES with similar fidelity. The implementation of our meshless LES scheme is released as open-source software, called FLOWVPMmore » « less
An official website of the United States government

