Science education is an important component of a full education beginning in primary grades. In recent decades, research has identified young learners’ rich knowledge of the natural world and their potential to connect with sophisticated science ideas. Elementary teachers face many challenges to implementing reform-based science instruction in their classrooms. Some teachers may choose to enhance their students’ science experiences by introducing them to citizen science (CS) projects. Unfortunately, few CS projects offer substantial guidance for teachers seeking to implement the projects for instructional purposes, placing a heavy burden on teachers. To address these burdens, our research team collaborated with Teacher Advisory Group (TAG teachers) during the development and revision of educative support materials for two CS projects. We present data about how the TAG teachers informed our CS support materials’ revisions, how they implemented the two CS projects with and without educative support materials, and how they perceived their students’ classroom and outdoor experiences with the CS projects. These data demonstrate the importance of including teachers’ voices and experiences in reform efforts, particularly when trying to incorporate instructional elements that teachers may perceive as deviations from what they are expected to teach.
more »
« less
This content will become publicly available on April 18, 2026
National Survey of 4th and 5th Grade Science Education Teachers: Insights Into Instruction and Inclusion of Students With Disabilities
Elementary science education, particularly in the 4th and 5th grades, is essential for setting the foundation for lifelong science learning, fostering critical thinking, and preparing students for success in science, technology, engineering, and mathematics (STEM) fields. This stage is especially critical for students with disabilities, as achievement gaps between them and their peers emerge during elementary school. Despite this importance, little is known about how science is taught in elementary classrooms during these critical years, particularly for students with disabilities. To address this gap, we surveyed teachers from a nationally representative sample of U.S. schools to examine elementary science education, including instructional practices, allocation of time, and the inclusion and support of students with disabilities. Our findings reveal that limited instructional time is allocated to science, with significant variability across classrooms. The amount of time dedicated to science instruction was significantly influenced by external factors, such as whether science was a tested subject. Students with disabilities often face additional barriers, including being pulled out of science instruction for special education services, resulting in missed opportunities to engage in science. These findings highlight the need to address opportunity gaps in science instruction to ensure all students have meaningful access to quality science education.
more »
« less
- Award ID(s):
- 2201464
- PAR ID:
- 10593431
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Editor(s):
- Gray, Ron; McDonald, Scott; Stroupe, David
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Science Education
- Edition / Version:
- NA
- Volume:
- NA
- Issue:
- NA
- ISSN:
- 0036-8326
- Page Range / eLocation ID:
- 1-16
- Subject(s) / Keyword(s):
- science_education learning_disabilities elementary_education classroom_observation teacher_practices student_engagement
- Format(s):
- Medium: X Size: 12MB Other: PDF
- Size(s):
- 12MB
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Teacher education is facing challenges given the recent incorporation of engineering practices and core ideas into the Next Generation Science Standards and state standards of learning. To help teachers meet these standards in their future classrooms, education courses for preservice teachers [PSTs] must provide opportunities to increase science and engineering knowledge, and the associated pedagogies. To address this need, Ed+gineering, an NSF-funded multidisciplinary service-learning project, was implemented to study ways in which PSTs are prepared to meet this challenge. This study provides the models and supporting data for four unique methods of infusion of engineering skills and practices into an elementary science methods course. The four models differ in mode of course delivery, integration of a group project (with or without partnering undergraduate engineering students), and final product (e.g., no product, video, interactive presentation, live lesson delivery). In three of the models, teams of 4-6 undergraduates collaborated to design and deliver (when applicable) lessons for elementary students. This multiple semester, mixed-methods research study, explored the ways in which four unique instructional models, with varied levels of engineering instruction enhancement, influenced PSTs’ science knowledge and pedagogical understanding. Both quantitative (e.g., science content knowledge assessment) and qualitative (e.g., student written reflections) data were used to assess science knowledge gains and pedagogical understanding. Findings suggest that the PSTs learned science content and were often able to explain particular science/ engineering concepts following the interventions. PSTs in more enhanced levels of intervention also shared ways in which their lessons reflected their students’ cultures through culturally responsive pedagogical strategies and how important engineering integration is to the elementary classroom, particularly through hands-on, inquiry-based instruction.more » « less
-
Through a mixed-methods approach that utilized teacher surveys and a focus group with computer science (CS) instructional coaches, this study examined elementary teachers’ confidence in meeting the needs of students with disabilities, the extent to which the teachers could use the Universal Design for Learning (UDL) framework in CS education, and the strategies that their CS instructional coaches used with them to help meet the needs of all learners, including those with disabilities. Findings from a Wilcoxon signed-rank test and a general linear regression of the teacher surveys revealed that teachers’ confidence in teaching CS and in meeting the needs of students with disabilities increased over the 5 month coaching study, but their understanding of UDL remained low throughout the study. A qualitative thematic analysis of open-response survey questions revealed that the teachers could identify instructional strategies that support the inclusion of students with disabilities in CS instruction. These strategies aligned with high leverage practices (HLPs) and included modeling, the use of explicit instruction, and opportunities for repeated instruction. When asked to identify UDL approaches, however, they had more difficulty. The focus group with coaches revealed that the coaches’ primary aim related broadly to equity and specifically to access to and the quality of CS instruction. However, although they introduced UDL-based strategies, they struggled to systematically incorporate UDL into coaching activities and did not explicitly label these strategies as part of the UDL framework on a consistent basis. This finding explains, to a large extent, the teachers’ limited understanding of UDL in the context of CS education.more » « less
-
Background and Context: The study was conducted in a special education classroom in an elementary school with multilingual Latine students, utilizing a computer science curriculum focused on community-based environmental literacy. Objective: This study explores the experiences of diverse elementary students with disabilities in learning computer programming and identifies instructional strategies that enhance their learning within a culturally sustaining curriculum. Method: An exploratory case study approach was used to examine students’ learning experiences and teachers’ instructional strategies during curriculum implementation. Findings: Students who typically did not engage with peers collaborated effectively, and those with behavioral and performance difficulties exhibited heightened engagement. Instructional strategies included multisensory engagement and connecting environmental and computational concepts to real-life situations. Implications: The result underscore how a culturally sustaining computer science curriculum can empower diverse students, foster inclusivity, and leverage their strengths through effective teaching practices.more » « less
-
Despite proliferated efforts to integrate computer science in elementary education, there is a dearth of studies that synthesize the current state of CS education research in formal educational contexts, specifically in upper elementary classrooms. Further, while numerous studies have investigated approaches and strategies that broaden participation in computing, the majority of them focus on secondary and post-secondary settings. The present study uses a systematic literature review process to review research conducted with students in formal classroom settings in grades 4, 5, and 6 and published since 2013. We review the research through two questions: What are barriers to broadening participation in CS in upper elementary (grades 4-6)? What instructional approaches and strategies help broaden participation in CS in upper elementary (grades 4-6)? A systematic search of the literature highlighted approaches used for broadening participation, including using various teaching media, designing scaffolds in instruction, and integrating into other subject areas. We conclude by identifying gaps in the research and identifying areas for further research.more » « less
An official website of the United States government
