skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Block Matrix and Tensor Randomized Kaczmarz Methods for Linear Feasibility Problems
Abstract The randomized Kaczmarz methods are a popular and effective family of iterative methods for solving large-scale linear systems of equations, which have also been applied to linear feasibility problems. In this work, we propose a new block variant of the randomized Kaczmarz method, B-MRK, for solving linear feasibility problems defined by matrices. We show that B-MRK converges linearly in expectation to the feasible region. Furthermore, we extend the method to solve tensor linear feasibility problems defined under the tensor t-product. A tensor randomized Kaczmarz (TRK) method, TRK-L, is proposed for solving linear feasibility problems that involve mixed equality and inequality constraints. Additionally, we introduce another TRK method, TRK-LB, specifically tailored for cases where the feasible region is defined by linear equality constraints coupled with bound constraints on the variables. We show that both of the TRK methods converge linearly in expectation to the feasible region. Moreover, the effectiveness of our methods is demonstrated through numerical experiments on various Gaussian random data and applications in image deblurring.  more » « less
Award ID(s):
2211318
PAR ID:
10593509
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
La Matematica
Volume:
4
Issue:
3
ISSN:
2730-9657
Format(s):
Medium: X Size: p. 557-585
Size(s):
p. 557-585
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract In this paper we consider large-scale smooth optimization problems with multiple linear coupled constraints. Due to the non-separability of the constraints, arbitrary random sketching would not be guaranteed to work. Thus, we first investigate necessary and sufficient conditions for the sketch sampling to have well-defined algorithms. Based on these sampling conditions we develop new sketch descent methods for solving general smooth linearly constrained problems, in particular, random sketch descent (RSD) and accelerated random sketch descent (A-RSD) methods. To our knowledge, this is the first convergence analysis of RSD algorithms for optimization problems with multiple non-separable linear constraints. For the general case, when the objective function is smooth and non-convex, we prove for the non-accelerated variant sublinear rate in expectation for an appropriate optimality measure. In the smooth convex case, we derive for both algorithms, non-accelerated and A-RSD, sublinear convergence rates in the expected values of the objective function. Additionally, if the objective function satisfies a strong convexity type condition, both algorithms converge linearly in expectation. In special cases, where complexity bounds are known for some particular sketching algorithms, such as coordinate descent methods for optimization problems with a single linear coupled constraint, our theory recovers the best known bounds. Finally, we present several numerical examples to illustrate the performances of our new algorithms. 
    more » « less
  2. Abstract The Randomized Kaczmarz method (RK) is a stochastic iterative method for solving linear systems that has recently grown in popularity due to its speed and low memory requirement. Selectable Set Randomized Kaczmarz is a variant of RK that leverages existing information about the Kaczmarz iterate to identify an adaptive “selectable set” and thus yields an improved convergence guarantee. In this article, we propose a general perspective for selectable set approaches and prove a convergence result for that framework. In addition, we define two specific selectable set sampling strategies that have competitive convergence guarantees to those of other variants of RK. One selectable set sampling strategy leverages information about the previous iterate, while the other leverages the orthogonality structure of the problem via the Gramian matrix. We complement our theoretical results with numerical experiments that compare our proposed rules with those existing in the literature. 
    more » « less
  3. The Kaczmarz algorithm is an iterative method for solving systems of linear equations. We introduce a randomized Kaczmarz algorithm for solving systems of linear equations in a distributed environment, i.e., the equations within the system are distributed over multiple nodes within a network. The modification we introduce is designed for a network with a tree structure that allows for passage of solution estimates between the nodes in the network. We demonstrate that the algorithm converges to the solution, or the solution of minimal norm, when the system is consistent. We also prove convergence rates of the randomized algorithm that depend on the spectral data of the coefficient matrix and the random control probability distribution. In addition, we demonstrate that the randomized algorithm can be used to identify anomalies in the system of equations when the measurements are perturbed by large, sparse noise. 
    more » « less
  4. A sequential quadratic optimization algorithm is proposed for solving smooth nonlinear-equality-constrained optimization problems in which the objective function is defined by an expectation. The algorithmic structure of the proposed method is based on a step decomposition strategy that is known in the literature to be widely effective in practice, wherein each search direction is computed as the sum of a normal step (toward linearized feasibility) and a tangential step (toward objective decrease in the null space of the constraint Jacobian). However, the proposed method is unique from others in the literature in that it both allows the use of stochastic objective gradient estimates and possesses convergence guarantees even in the setting in which the constraint Jacobians may be rank-deficient. The results of numerical experiments demonstrate that the algorithm offers superior performance when compared with popular alternatives. 
    more » « less
  5. N/A (Ed.)
    Abstract This work unifies the analysis of various randomized methods for solving linear and nonlinear inverse problems with Gaussian priors by framing the problem in a stochastic optimization setting. By doing so, we show that many randomized methods are variants of a sample average approximation (SAA). More importantly, we are able to prove a single theoretical result that guarantees the asymptotic convergence for a variety of randomized methods. Additionally, viewing randomized methods as an SAA enables us to prove, for the first time, a single non-asymptotic error result that holds for randomized methods under consideration. Another important consequence of our unified framework is that it allows us to discover new randomization methods. We present various numerical results for linear, nonlinear, algebraic, and PDE-constrained inverse problems that verify the theoretical convergence results and provide a discussion on the apparently different convergence rates and the behavior for various randomized methods. 
    more » « less