skip to main content


Title: Randomized sketch descent methods for non-separable linearly constrained optimization
Abstract In this paper we consider large-scale smooth optimization problems with multiple linear coupled constraints. Due to the non-separability of the constraints, arbitrary random sketching would not be guaranteed to work. Thus, we first investigate necessary and sufficient conditions for the sketch sampling to have well-defined algorithms. Based on these sampling conditions we develop new sketch descent methods for solving general smooth linearly constrained problems, in particular, random sketch descent (RSD) and accelerated random sketch descent (A-RSD) methods. To our knowledge, this is the first convergence analysis of RSD algorithms for optimization problems with multiple non-separable linear constraints. For the general case, when the objective function is smooth and non-convex, we prove for the non-accelerated variant sublinear rate in expectation for an appropriate optimality measure. In the smooth convex case, we derive for both algorithms, non-accelerated and A-RSD, sublinear convergence rates in the expected values of the objective function. Additionally, if the objective function satisfies a strong convexity type condition, both algorithms converge linearly in expectation. In special cases, where complexity bounds are known for some particular sketching algorithms, such as coordinate descent methods for optimization problems with a single linear coupled constraint, our theory recovers the best known bounds. Finally, we present several numerical examples to illustrate the performances of our new algorithms.  more » « less
Award ID(s):
1740796 1618717
NSF-PAR ID:
10207836
Author(s) / Creator(s):
;
Date Published:
Journal Name:
IMA Journal of Numerical Analysis
ISSN:
0272-4979
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We introduce a framework for designing primal methods under the decentralized optimization setting where local functions are smooth and strongly convex. Our approach consists of approximately solving a sequence of sub-problems induced by the accelerated augmented Lagrangian method, thereby providing a systematic way for deriving several well-known decentralized algorithms including EXTRA and SSDA. When coupled with accelerated gradient descent, our framework yields a novel primal algorithm whose convergence rate is optimal and matched by recently derived lower bounds. We provide experimental results that demonstrate the effectiveness of the proposed algorithm on highly ill-conditioned problems. 
    more » « less
  2. null (Ed.)
    We introduce a framework for designing primal methods under the decentralized optimization setting where local functions are smooth and strongly convex. Our approach consists of approximately solving a sequence of sub-problems induced by the accelerated augmented Lagrangian method, thereby providing a systematic way for deriving several well-known decentralized algorithms including EXTRA [41] and SSDA [37]. When coupled with accelerated gradient descent, our framework yields a novel primal algorithm whose convergence rate is optimal and matched by recently derived lower bounds. We provide experimental results that demonstrate the effectiveness of the proposed algorithm on highly ill-conditioned problems. 
    more » « less
  3. Nonconvex and nonsmooth problems have recently attracted considerable attention in machine learning. However, developing efficient methods for the nonconvex and nonsmooth optimization problems with certain performance guarantee remains a challenge. Proximal coordinate descent (PCD) has been widely used for solving optimization problems, but the knowledge of PCD methods in the nonconvex setting is very limited. On the other hand, the asynchronous proximal coordinate descent (APCD) recently have received much attention in order to solve large-scale problems. However, the accelerated variants of APCD algorithms are rarely studied. In this project, we extend APCD method to the accelerated algorithm (AAPCD) for nonsmooth and nonconvex problems that satisfies the sufficient descent property, by comparing between the function values at proximal update and a linear extrapolated point using a delay-aware momentum value. To the best of our knowledge, we are the first to provide stochastic and deterministic accelerated extension of APCD algorithms for general nonconvex and nonsmooth problems ensuring that for both bounded delays and unbounded delays every limit point is a critical point. By leveraging Kurdyka-Łojasiewicz property, we will show linear and sublinear convergence rates for the deterministic AAPCD with bounded delays. Numerical results demonstrate the practical efficiency of our algorithm in speed. 
    more » « less
  4. We introduce a generic scheme for accelerating gradient-based optimization methods in the sense of Nesterov. The approach, called Catalyst, builds upon the inexact accelerated proximal point algorithm for minimizing a convex objective function, and consists of approximately solving a sequence of well-chosen auxiliary problems, leading to faster convergence. One of the keys to achieve acceleration in theory and in practice is to solve these sub-problems with appropriate accuracy by using the right stopping criterion and the right warm-start strategy. We give practical guidelines to use Catalyst and present a comprehensive analysis of its global complexity. We show that Catalyst applies to a large class of algorithms, including gradient descent, block coordinate descent, incremental algorithms such as SAG, SAGA, SDCA, SVRG, MISO/Finito, and their proximal variants. For all of these methods, we establish faster rates using the Catalyst acceleration, for strongly convex and non-strongly convex objectives. We conclude with extensive experiments showing that acceleration is useful in practice, especially for ill-conditioned problems. 
    more » « less
  5. null (Ed.)
    We consider the communication complexity of a number of distributed optimization problems. We start with the problem of solving a linear system. Suppose there is a coordinator together with s servers P1, …, Ps, the i-th of which holds a subset A(i) x = b(i) of ni constraints of a linear system in d variables, and the coordinator would like to output an x ϵ ℝd for which A(i) x = b(i) for i = 1, …, s. We assume each coefficient of each constraint is specified using L bits. We first resolve the randomized and deterministic communication complexity in the point-to-point model of communication, showing it is (d2 L + sd) and (sd2L), respectively. We obtain similar results for the blackboard communication model. As a result of independent interest, we show the probability a random matrix with integer entries in {–2L, …, 2L} is invertible is 1–2−Θ(dL), whereas previously only 1 – 2−Θ(d) was known. When there is no solution to the linear system, a natural alternative is to find the solution minimizing the ℓp loss, which is the ℓp regression problem. While this problem has been studied, we give improved upper or lower bounds for every value of p ≥ 1. One takeaway message is that sampling and sketching techniques, which are commonly used in earlier work on distributed optimization, are neither optimal in the dependence on d nor on the dependence on the approximation ε, thus motivating new techniques from optimization to solve these problems. Towards this end, we consider the communication complexity of optimization tasks which generalize linear systems, such as linear, semi-definite, and convex programming. For linear programming, we first resolve the communication complexity when d is constant, showing it is (sL) in the point-to-point model. For general d and in the point-to-point model, we show an Õ(sd3L) upper bound and an (d2 L + sd) lower bound. In fact, we show if one perturbs the coefficients randomly by numbers as small as 2−Θ(L), then the upper bound is Õ(sd2L) + poly(dL), and so this bound holds for almost all linear programs. Our study motivates understanding the bit complexity of linear programming, which is related to the running time in the unit cost RAM model with words of O(log(nd)) bits, and we give the fastest known algorithms for linear programming in this model. Read More: https://epubs.siam.org/doi/10.1137/1.9781611975994.106 
    more » « less