Abstract Electrochemical CO2reduction reaction (CO2‐RR) in non‐aqueous electrolytes offers significant advantages over aqueous systems, as it boosts CO2solubility and limits the formation of HCO3−and CO32−anions. Metal–organic frameworks (MOFs) in non‐aqueous CO2‐RR makes an attractive system for CO2capture and conversion. However, the predominantly organic composition of MOFs limits their electrical conductivity and stability in electrocatalysis, where they suffer from electrolytic decomposition. In this work, electrically conductive and stable Zirconium (Zr)‐based porphyrin MOF, specifically PCN‐222, metalated with a single‐atom Cu has been explored, which serves as an efficient single‐atom catalyst (SAC) for CO2‐RR. PCN‐ 222(Cu) demonstrates a substantial enhancement in redox activity due to the synergistic effect of the Zr matrix and the single‐atom Cu site, facilitating complete reduction of C2species under non‐aqueous electrolytic conditions. The current densities achieved (≈100 mA cm−2) are 4–5 times higher than previously reported values for MOFs, with a faradaic efficiency of up to 40% for acetate production, along with other multivariate C2products, which have never been achieved previously in non‐aqueous systems. Characterization using X‐ray and various spectroscopic techniques, reveals critical insights into the role of the Zr matrix and Cu sites in CO2reduction, benchmarking PCN‐222(Cu) for MOF‐based SAC electrocatalysis.
more »
« less
Structure Sensitivity and Catalyst Restructuring for CO2 Electro-reduction on Copper
Abstract Cu is the most promising metal catalyst for CO2electroreduction (CO2RR) to multi-carbon products, yet the structure sensitivity of the reaction and the stability versus restructuring of the catalyst surface under reaction conditions remain controversial. Here, atomic scale simulations of surface energies and reaction pathway kinetics supported by experimental evidence unveil that CO2RR does not take place on perfect planar Cu(111) and Cu(100) surfaces but rather on steps or kinks. These planar surfaces tend to restructure in reaction conditions to the active stepped surfaces, with the strong binding of CO on defective sites acting as a thermodynamic driving force. Notably, we identify that the square motifs adjacent to defects, not the defects themselves, as the active sites for CO2RR via synergistic effect. We evaluate these mechanisms against experiments of CO2RR on ultra-high vacuum-prepared ultraclean Cu surfaces, uncovering the crucial role of step-edge orientation in steering selectivity. Overall, our study refines the structural sensitivity of CO2RR on Cu at the atomic level, highlights the self-activation mechanism and elucidates the origin of in situ restructuring of Cu surfaces during the reaction.
more »
« less
- Award ID(s):
- 2103116
- PAR ID:
- 10593551
- Publisher / Repository:
- NPG
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 16
- Issue:
- 1
- ISSN:
- 2041-1723
- Page Range / eLocation ID:
- 4064
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)The selectivity towards a specific C 2+ product, such as ethylene (C 2 H 4 ), is sensitive to the surface structure of copper (Cu) catalysts in carbon dioxide (CO 2 ) electro-reduction. The fundamental understanding of such sensitivity can guide the development of advanced electrocatalysts, although it remains challenging at the atomic level. Here we demonstrated that planar defects, such as stacking faults, could drive the electrocatalysis of CO 2 -to-C 2 H 4 conversion with higher selectivity and productivity than Cu(100) facets in the intermediate potential region (−0.50 ∼ −0.65 V vs. RHE). The unique right bipyramidal Cu nanocrystals containing a combination of (100) facets and a set of parallel planar defects delivered 67% faradaic efficiency (FE) for C 2 H 4 and a partial current density of 217 mA cm −2 at −0.63 V vs. RHE. In contrast, Cu nanocubes with exclusive (100) facets exhibited only 46% FE for C 2 H 4 and a partial current density of 87 mA cm −2 at an identical potential. Both ex situ CO temperature-programmed desorption and in situ Raman spectroscopy analysis implied that the stronger *CO adsorption on planar defect sites facilitates CO generation kinetics, which contributes to a higher surface coverage of *CO and in turn an enhanced reaction rate of C–C coupling towards C 2+ products, especially C 2 H 4 .more » « less
-
Abstract The dynamic restructuring of Cu surfaces in electroreduction conditions is of fundamental interest in electrocatalysis. We decode the structural dynamics of a Cu(111) electrode under reduction conditions by joint first‐principles calculations and operando electrochemical scanning tunneling microscopy (ECSTM) experiments. Combining global optimization and grand canonical density functional theory, we unravel the potential‐ and pH‐dependent restructuring of Cu(111) in acidic electrolyte. At reductive potential, Cu(111) is covered by a high density of H atoms and, below a threshold potential, Cu adatoms are formed on the surface in a (4×4) superstructure, a restructuring unfavorable in vacuum. The strong H adsorption is the driving force for the restructuring, itself induced by the electrode potential. On the restructured surface, barriers for hydrogen evolution reaction steps are low. Restructuring in electroreduction conditions creates highly active Cu adatom sites not present on Cu(111).more » « less
-
Abstract Copper-based catalyst is uniquely positioned to catalyze the hydrocarbon formations through electrochemical CO2reduction. The catalyst design freedom is limited for alloying copper with H-affinitive elements represented by platinum group metals because the latter would easily drive the hydrogen evolution reaction to override CO2reduction. We report an adept design of anchoring atomically dispersed platinum group metal species on both polycrystalline and shape-controlled Cu catalysts, which now promote targeted CO2reduction reaction while frustrating the undesired hydrogen evolution reaction. Notably, alloys with similar metal formulations but comprising small platinum or palladium clusters would fail this objective. With an appreciable amount of CO-Pd1moieties on copper surfaces, facile CO*hydrogenation to CHO*or CO-CHO*coupling is now viable as one of the main pathways on Cu(111) or Cu(100) to selectively produce CH4or C2H4through Pd-Cu dual-site pathways. The work broadens copper alloying choices for CO2reduction in aqueous phases.more » « less
-
Abstract Electrochemical CO2reduction (CO2RR) on copper (Cu) shows promise for higher‐value products beyond CO. However, challenges such as the limited CO2solubility, high overpotentials, and the competing hydrogen evolution reaction (HER) in aqueous electrolytes hinder the practical realization. We propose a functionalized ionic liquid (IL) which generates ion‐CO2adducts and a hydrogen bond donor (HBD) upon CO2absorption to modulate CO2RR on Cu in a non‐aqueous electrolyte. As revealed by transient voltammetry, electrochemical impedance spectroscopy (EIS), and in situ surface‐enhanced Raman spectroscopy (SERS) complemented with image charge augmented quantum‐mechanical/molecular mechanics (IC‐QM/MM) computations, a unique microenvironment is constructed. In this microenvironment, the catalytic activity is primarily governed by the IL and HBD concentrations; former controlling the double layer thickness and the latter modulating the local proton availability. This translates to ample CO2availability, reduced overpotential, and suppressed HER where C4products are obtained. This study deepens the understanding of electrolyte effects in CO2RR and the role of IL ions towards electrocatalytic microenvironment design.more » « less
An official website of the United States government

