skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Analysis of the Picard-Newton Iteration for the Navier-Stokes Equations: Global Stability and Quadratic Convergence
Abstract We analyze and test a simple-to-implement two-step iteration for the incompressible Navier-Stokes equations that consists of first applying the Picard iteration and then applying the Newton iteration to the Picard output. We prove that this composition of Picard and Newton converges quadratically, and our analysis (which covers both the unique solution and non-unique solution cases) also suggests that this solver has a larger convergence basin than usual Newton because of the improved stability properties of Picard-Newton over Newton. Numerical tests show that Picard-Newton converges more reliably for higher Reynolds numbers and worse initial conditions than Picard and Newton iterations. We also consider enhancing the Picard step with Anderson acceleration (AA), and find that the AAPicard-Newton iteration has even better convergence properties on several benchmark test problems.  more » « less
Award ID(s):
2011490
PAR ID:
10593574
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Journal of Scientific Computing
Volume:
104
Issue:
1
ISSN:
0885-7474
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This paper develops an efficient and robust solution technique for the steady Boussinesq model of non-isothermal flow using Anderson acceleration applied to a Picard iteration. After analyzing the fixed point operator associated with the nonlinear iteration to prove that certain stability and regularity properties hold, we apply the authors’ recently constructed theory for Anderson acceleration, which yields a convergence result for the Anderson accelerated Picard iteration for the Boussinesq system. The result shows that the leading term in the residual is improved by the gain in the optimization problem, but at the cost of additional higher order terms that can be significant when the residual is large. We perform numerical tests that illustrate the theory, and show that a 2-stage choice of Anderson depth can be advantageous. We also consider Anderson acceleration applied to the Newton iteration for the Boussinesq equations, and observe that the acceleration allows the Newton iteration to converge for significantly higher Rayleigh numbers that it could without acceleration, even with a standard line search. 
    more » « less
  2. In this paper we provide a new method to certify that a nearby polynomial system has a singular isolated root and we compute its multiplicity structure. More precisely, given a polynomial system, we present a Newton iteration on an extended deflated system that locally converges, under regularity conditions, to a small deformation of f such that this deformed system has an exact singular root. The iteration simultaneously converges to the coordinates of the singular root and the coefficients of the so-called inverse system that describes the multiplicity structure at the root. We use α-theory test to certify the quadratic convergence, and to give bounds on the size of the deformation and on the approximation error. The approach relies on an analysis of the punctual Hilbert scheme, for which we provide a new description. We show in particular that some of its strata can be rationally parametrized and exploit these parametrizations in the certification. We show in numerical experimentation how the approximate inverse system can be computed as a starting point of the Newton iterations and the fast numerical convergence to the singular root with its multiplicity structure, certified by our criteria. 
    more » « less
  3. In this paper we provide a new method to certify that a nearby polynomial system has a singular isolated root and we compute its multiplicity structure. More precisely, given a polynomial system f = (f1, ..., fN) ∈ C[x1, ..., xn]^N, we present a Newton iteration on an extended deflated system that locally converges, under regularity conditions, to a small deformation of f such that this deformed system has an exact singular root. The iteration simultaneously converges to the coordinates of the singular root and the coefficients of the so-called inverse system that describes the multiplicity structure at the root. We use α-theory test to certify the quadratic convergence, and to give bounds on the size of the deformation and on the approximation error. The approach relies on an analysis of the punctual Hilbert scheme, for which we provide a new description. We show in particular that some of its strata can be rationally parametrized and exploit these parametrizations in the certification. We show in numerical experimentation how the approximate inverse system can be computed as a starting point of the Newton iterations and the fast numerical convergence to the singular root with its multiplicity structure, certified by our criteria. 
    more » « less
  4. The incremental Picard Yosida (IPY) method has recently been developed as an iteration for nonlinear saddle point problems that is as effective as Picard but more efficient. By combining ideas from algebraic splitting of linear saddle point solvers with incremental Picard‐type iterations and grad‐div stabilization, IPY improves on the standard Picard method by allowing for easier linear solves at each iteration—but without creating more total nonlinear iterations compared to Picard. This paper extends the IPY methodology by studying it together with Anderson acceleration (AA). We prove that IPY for Navier–Stokes and regularized Bingham fits the recently developed analysis framework for AA, which implies that AA improves the linear convergence rate of IPY by scaling the rate with the gain of the AA optimization problem. Numerical tests illustrate a significant improvement in convergence behavior of IPY methods from AA, for both Navier–Stokes and regularized Bingham. 
    more » « less
  5. We propose a globally convergent computational technique for the nonlinear inverse problem of reconstructing the zero-order coefficient in a parabolic equation using partial boundary data. This technique is called the ``reduced dimensional method.'' Initially, we use the polynomial-exponential basis to approximate the inverse problem as a system of 1D nonlinear equations. We then employ a Picard iteration based on the quasi-reversibility method and a Carleman weight function. We will rigorously prove that the sequence derived from this iteration converges to the accurate solution for that 1D system without requesting a good initial guess of the true solution. The key tool for the proof is a Carleman estimate. We will also show some numerical examples. 
    more » « less