In this paper we provide a new method to certify that a nearby polynomial system has a singular isolated root and we compute its multiplicity structure. More precisely, given a polynomial system f = (f1, ..., fN) ∈ C[x1, ..., xn]^N, we present a Newton iteration on an extended deflated system that locally converges, under regularity conditions, to a small deformation of f such that this deformed system has an exact singular root. The iteration simultaneously converges to the coordinates of the singular root and the coefficients of the so-called inverse system that describes the multiplicity structure at the root. We use α-theory test to certify the quadratic convergence, and to give bounds on the size of the deformation and on the approximation error. The approach relies on an analysis of the punctual Hilbert scheme, for which we provide a new description. We show in particular that some of its strata can be rationally parametrized and exploit these parametrizations in the certification. We show in numerical experimentation how the approximate inverse system can be computed as a starting point of the Newton iterations and the fast numerical convergence to the singular root with its multiplicity structure, certified by our criteria.
more »
« less
A certified iterative method for isolated singular roots
In this paper we provide a new method to certify that a nearby polynomial system has a singular isolated root and we compute its multiplicity structure. More precisely, given a polynomial system, we present a Newton iteration on an extended deflated system that locally converges, under regularity conditions, to a small deformation of f such that this deformed system has an exact singular root. The iteration simultaneously converges to the coordinates of the singular root and the coefficients of the so-called inverse system that describes the multiplicity structure at the root. We use α-theory test to certify the quadratic convergence, and to give bounds on the size of the deformation and on the approximation error. The approach relies on an analysis of the punctual Hilbert scheme, for which we provide a new description. We show in particular that some of its strata can be rationally parametrized and exploit these parametrizations in the certification. We show in numerical experimentation how the approximate inverse system can be computed as a starting point of the Newton iterations and the fast numerical convergence to the singular root with its multiplicity structure, certified by our criteria.
more »
« less
- Award ID(s):
- 1813340
- PAR ID:
- 10473734
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Journal of Symbolic Computation
- Volume:
- 115
- Issue:
- C
- ISSN:
- 0747-7171
- Page Range / eLocation ID:
- 223 to 247
- Subject(s) / Keyword(s):
- Polynomial equations, Isolated solution, Multiple root, Certification, Newton iteration, Deflation
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We analyze and test a simple-to-implement two-step iteration for the incompressible Navier-Stokes equations that consists of first applying the Picard iteration and then applying the Newton iteration to the Picard output. We prove that this composition of Picard and Newton converges quadratically, and our analysis (which covers both the unique solution and non-unique solution cases) also suggests that this solver has a larger convergence basin than usual Newton because of the improved stability properties of Picard-Newton over Newton. Numerical tests show that Picard-Newton converges more reliably for higher Reynolds numbers and worse initial conditions than Picard and Newton iterations. We also consider enhancing the Picard step with Anderson acceleration (AA), and find that the AAPicard-Newton iteration has even better convergence properties on several benchmark test problems.more » « less
-
We propose a globally convergent computational technique for the nonlinear inverse problem of reconstructing the zero-order coefficient in a parabolic equation using partial boundary data. This technique is called the ``reduced dimensional method.'' Initially, we use the polynomial-exponential basis to approximate the inverse problem as a system of 1D nonlinear equations. We then employ a Picard iteration based on the quasi-reversibility method and a Carleman weight function. We will rigorously prove that the sequence derived from this iteration converges to the accurate solution for that 1D system without requesting a good initial guess of the true solution. The key tool for the proof is a Carleman estimate. We will also show some numerical examples.more » « less
-
In this paper, we provide a theoretical analysis for a preconditioned steepest descent (PSD) iterative solver that improves the computational time of a finite difference numerical scheme for the Cahn-Hilliard equation with Flory-Huggins energy potential. In the numerical design, a convex splitting approach is applied to the chemical potential such that the logarithmic and the surface diffusion terms are treated implicitly while the expansive concave term is treated with an explicit update. The nonlinear and singular nature of the logarithmic energy potential makes the numerical implementation very challenging. However, the positivity-preserving property for the logarithmic arguments, unconditional energy stability, and optimal rate error estimates have been established in a recent work and it has been shown that successful solvers ensure a similar positivity-preserving property at each iteration stage. Therefore, in this work, we will show that the PSD solver ensures a positivity-preserving property at each iteration stage. The PSD solver consists of first computing a search direction (which requires solving a constant-coefficient Poisson-like equation) and then takes a one-parameter optimization step over the search direction in which the Newton iteration becomes very powerful. A theoretical analysis is applied to the PSD iteration solver and a geometric convergence rate is proved for the iteration. In particular, the strict separation property of the numerical solution, which indicates a uniform distance between the numerical solution and the singular limit values of ±1 for the phase variable, plays an essential role in the iteration convergence analysis. A few numerical results are presented to demonstrate the robustness and efficiency of the PSD solver.more » « less
-
The purpose of this paper is to develop a practical strategy to accelerate Newton’s method in the vicinity of singular points. We present an adaptive safeguarding scheme with a tunable parameter, which we call adaptive γ-safeguarding, that one can use in tandem with Anderson acceleration to improve the performance of Newton’s method when solving problems at or near singular points. The key features of adaptive γ-safeguarding are that it converges locally for singular problems, and it can detect nonsingular problems automatically, in which case the Newton-Anderson iterates are scaled towards a standard Newton step. The result is a flexible algorithm that performs well for singular and nonsingular problems, and can recover convergence from both standard Newton and Newton-Anderson with the right parameter choice. This leads to faster local convergence compared to both Newton’s method, and Newton-Anderson without safeguarding, with effectively no additional computational cost. We demonstrate three strategies one can use when implementing Newton-Anderson and γ-safeguarded Newton-Anderson to solve parameter-dependent problems near singular points. For our benchmark problems, we take two parameter-dependent incompressible flow systems: flow in a channel and Rayleigh-Benard convection.more » « less
An official website of the United States government

