skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2004749

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Polarized thermal emission finds extensive applications in remote sensing, landmine detection, and target detection. In applications such as ellipsometry and biomedical analysis, the generation of emission with controllable polarization is preferred. It is desired to manipulate the polarization state over the full Stokes parameters. While numerous studies have demonstrated either linear or circular polarization control using metamaterials, full-Stokes thermal emission has not been explored. Here, a microstructure based on two layers of silicon carbide gratings is proposed to tailor the polarization state of thermal emission, covering the full-Stokes parameter range. The bilayer twisted-gratings structure breaks mirror symmetry. Wave interference at the interfaces and diffraction by the gratings enhance the emission dichroism, resulting in almost completely polarized emission. By adjusting the twist angle between the gratings, the polarization state can be continuously tuned from linear to circular, nearly covering the entire surface of Poincaré sphere. This study provides a design for tailoring full-Stokes emission with notable advantages over other plasmonic metasurfaces. 
    more » « less
  2. Abstract Ultrafast optical switching in plasmonic platforms relies on the third‐order Kerr nonlinearity, which is tightly linked to the dynamics of hot carriers in nanostructured metals. Although extensively utilized, a fundamental understanding on the dependence of the switching dynamics upon optical resonances has often been overlooked. Here, all‐optical control of resonance bands in a hybrid photonic‐plasmonic crystal is employed as an empowering technique for probing the resonance‐dependent switching dynamics upon hot carrier formation. Differential optical transmission measurements reveal an enhanced switching performance near the anti‐crossing point arising from strong coupling between local and nonlocal resonance modes. Furthermore, entangled with hot‐carrier dynamics, the nonlinear correspondence between optical resonances and refractive index change results in tailorable dispersion of recovery speeds which can notably deviate from the characteristic lifetime of hot carriers. The comprehensive understanding provides new protocols for optically characterizing hot‐carrier dynamics and optimizing resonance‐based all‐optical switches for operations across the visible spectrum. 
    more » « less
  3. Abstract Enantiomers are chiral isomers in which the isomer's structure itself and its mirror image cannot be superimposed on each other. Enantiomer selective sensing is critical as enantiomers exhibit distinct functionalities to their mirror image. Discriminating between enantiomers by optical methods has been widely used as these techniques provide nondestructive characterization, however, they are constrained by the intrinsically small chirality of the molecules. Here, a method to effectively discriminate chiral analytes in the nonlinear regime is demonstrated, which is facilitated by an upconverting chiral plasmonic metamaterial. The different handedness of the chiral molecules interacts with the chiral metamaterial platform, which leads to a change in the circular dichroism of the chiral metamaterial in the near‐infrared region. The contrast of the circular dichroism is identified by the upconverted signal in the visible region. 
    more » « less
  4. Abstract Phase-change materials (PCMs) offer a compelling platform for active metaoptics, owing to their large index contrast and fast yet stable phase transition attributes. Despite recent advances in phase-change metasurfaces, a fully integrable solution that combines pronounced tuning measures, i.e., efficiency, dynamic range, speed, and power consumption, is still elusive. Here, we demonstrate an in situ electrically driven tunable metasurface by harnessing the full potential of a PCM alloy, Ge2Sb2Te5(GST), to realize non-volatile, reversible, multilevel, fast, and remarkable optical modulation in the near-infrared spectral range. Such a reprogrammable platform presents a record eleven-fold change in the reflectance (absolute reflectance contrast reaching 80%), unprecedented quasi-continuous spectral tuning over 250 nm, and switching speed that can potentially reach a few kHz. Our scalable heterostructure architecture capitalizes on the integration of a robust resistive microheater decoupled from an optically smart metasurface enabling good modal overlap with an ultrathin layer of the largest index contrast PCM to sustain high scattering efficiency even after several reversible phase transitions. We further experimentally demonstrate an electrically reconfigurable phase-change gradient metasurface capable of steering an incident light beam into different diffraction orders. This work represents a critical advance towards the development of fully integrable dynamic metasurfaces and their potential for beamforming applications. 
    more » « less
  5. Abstract Machine learning, as a study of algorithms that automate prediction and decision‐making based on complex data, has become one of the most effective tools in the study of artificial intelligence. In recent years, scientific communities have been gradually merging data‐driven approaches with research, enabling dramatic progress in revealing underlying mechanisms, predicting essential properties, and discovering unconventional phenomena. It is becoming an indispensable tool in the fields of, for instance, quantum physics, organic chemistry, and medical imaging. Very recently, machine learning has been adopted in the research of photonics and optics as an alternative approach to address the inverse design problem. In this report, the fast advances of machine‐learning‐enabled photonic design strategies in the past few years are summarized. In particular, deep learning methods, a subset of machine learning algorithms, dealing with intractable high degrees‐of‐freedom structure design are focused upon. 
    more » « less
  6. Plasmonics and optical metastructures represent cutting-edge frontiers in nanophotonics, enabling on-demand control of light at the subwavelength scale. This special topic of the Journal of Applied Physics highlights the recent advancements and synergy of the two fields, delving into the fundamental physics governing plasmonic phenomena and showcasing innovative metastructures that hold significant potential for diverse applications, including sensing, optical manipulation, wireless communication, optical computing, and beyond. 
    more » « less
    Free, publicly-accessible full text available March 14, 2026
  7. Tailoring optical and radiative properties has attracted significant attention recently due to its importance in advanced energy systems, nanophotonics, electro-optics, and nanomanufacturing. Metamaterials with micro- and nanostructures exhibit exotic radiative properties with tunability across the spectrum, direction, and polarization. Structures made from anisotropic or nanostructured materials have shown polarization-selective absorption bands in the mid-infrared. Characterizing the optical and radiative properties of such materials is crucial for both fundamental research and the development of practical applications. Mueller matrix ellipsometry offers a nondestructive and noninvasive technique for characterizing radiative properties. Although such ellipsometers have long been used to measure optical properties, their operational bandwidth is usually limited to the visible to near-infrared range, leaving the mid-infrared largely unexplored. In this work, a broadband mid-infrared ellipsometer, operating from 2 to 15 μm, is designed and constructed to measure 12 elements of the Mueller matrix. The results may be used to determine the full Mueller matrix under specific conditions. The performance of the ellipsometer is evaluated using nanostructured materials, including a 1D grating and a chiral F-shaped metasurface. The measurement results compared well to those obtained from rigorous-coupled-wave analysis and finite-difference time-domain simulations, suggesting that this setup offers a useful tool in optical property retrieval and the assessment of nanostructured materials. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  8. Free, publicly-accessible full text available December 1, 2025
  9. Physical processes involving hot electrons, including their generation, transport, injection, and relaxation, have been an extensive area of research. The most widely utilized method for actuating the creation of hot electrons involves the excitation of plasmonic modes followed by their non-radiative decay, channeling the energy into these energetic carriers. Since plasmonics has already evolved into a mature field of scientific exploration, active plasmonic devices serve as an ideal platform to study hot-electron physics. In this Perspective article, we will provide the reader with a comprehensive outline of the physics underlying hot-electron dynamics. Emphasis will be placed on the characteristic timescales involved with the lifecycle of hot electrons, the generation and decay mechanisms of surface plasmon-induced hot electrons, and the material platforms suitable for such a study. Then, we will move on to discuss different temperature models used to explain the evolution of hot electrons and the changes in the optical properties of the materials they are generated in or injected into. Finally, we will focus on some of the interesting optical phenomena occurring at ultrafast timescales mediated by hot-carrier dynamics. Such a discussion is expected to incorporate valuable insights into our understanding of the synergistic relationship between hot-electron dynamics and active plasmonics, thereby paving the way for novel applications involving optoelectronics and energy conversion. 
    more » « less
  10. Chirality is a geometric property describing the lack of mirror symmetry. This unique feature enables photonic spin-selectivity in light–matter interaction, which is of great significance in stereochemistry, drug development, quantum optics, and optical polarization control. The versatile control of optical geometry renders optical metamaterials as an effective platform for engineered chiral properties at prescribed spectral regimes. Unfortunately, geometry-imposed restrictions only allow one circular polarization state of photons to effectively interact with chiral meta-structures. This limitation motivates the idea of discovering alternative techniques for dynamically reconfiguring the chiroptical responses of metamaterials in a fast and facile manner. Here, we demonstrate an approach that enables optical, sub-picosecond conversion of achiral meta-structures to transient chiral media in the visible regime with desired handedness upon the inhomogeneous generation of plasmonic hot electrons. As a proof of concept, we utilize linearly polarized laser pulse to demonstrate near-complete conversion of spin sensitivity in an achiral meta-platform—a functionality yet achieved in a non-mechanical fashion. Owing to the generation, diffusion, and relaxation dynamics of hot electrons, the demonstrated technique for all-optical creation of chirality is inherently fast, opening new avenues for ultrafast spectro-temporal construction of chiral platforms with on-demand spin-selectivity. 
    more » « less