Rapid warming is likely increasing primary production and wildfire occurrence in the Arctic. Projected changes in the abundance and composition of carbonaceous aerosols during the summer are likely to impact atmospheric chemistry and climate, but our understanding of these processes is limited by sparse observations. Here, we characterize carbonaceous aerosol at two field sites, Toolik Field Station in the Interior and the Atmospheric Radiation Measurement facility at Utqiaġvik on the Arctic coast of Alaska, USA, through the summers of 2022 and 2023. We estimated particulate matter ≤2.5 micrometers (PM2.5) and particulate matter ≤10 micrometers (PM10) using laser light scattering (PurpleAir sensors) and examined total carbon (TC) and its organic carbon (OC) and elemental carbon (EC) fractions in total suspended particles (TSP). We also investigated the dominant sources of carbonaceous aerosol using air mass backward-trajectories from the National Oceanic and Atmospheric Administration (NOAA) Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model and radiocarbon source apportionment of TC. We found TC concentrations were about twice as high in the Interior than on the coast and that modern sources were the dominant sources of carbonaceous aerosol at both Toolik (95–99%) and Utqiaġvik (86–89%), with minor contributions from fossil sources. Periods of significantly elevated PM, TC, OC, and EC concentrations coincided with major boreal forest fire activity in North America that brought smoke to the region. The radiocarbon signature of EC measured at Toolik during these wildfire smoke events indicated that over 90% of the EC originated from modern sources. Our measurements demonstrate changing aerosol concentrations in the Arctic during the summer, and emphasize the need for continuous atmospheric monitoring to evaluate and advance our understanding of this rapidly changing atmospheric environment. (Manuscript in prep)
more »
« less
Summertime Carbonaceous Aerosol in Interior Versus Coastal Northern Alaska
Abstract Rapid warming is likely increasing primary production and wildfire occurrence in the Arctic. Projected changes in carbonaceous aerosols during the summer will impact atmospheric chemistry and climate, but our understanding of these processes is limited by sparse observations. Here, we characterize carbonaceous aerosol in Alaska, USA: Toolik Field Station in the Interior and the Atmospheric Radiation Measurement facility at Utqiaġvik on the Arctic coast, during the summers of 2022 and 2023. We estimated PM2.5and PM10concentrations using laser light scattering (PurpleAir sensors) and examined total carbon (TC) and its organic carbon (OC) and elemental carbon (EC) fractions in total suspended particles (TSP). We investigated the dominant sources of carbonaceous aerosol using air mass backward‐trajectories from the NOAA HYSPLIT model and radiocarbon source apportionment of TC. TC concentrations were about twice as high in the Interior compared to the coast, with contemporary sources dominating at both Toolik (95%–99%) and Utqiaġvik (86%–89%) over minor contributions from fossil sources. Elevated PM, TC, OC, and EC concentrations coincided with major boreal forest fire activity in North America that brought smoke to the region. The radiocarbon signature of EC measured at Toolik during these wildfire events indicated that over 90% of the EC came from contemporary sources. Our measurements demonstrate the potential for Arctic aerosol concentrations to respond significantly to climate warming‐induced changes to the landscape and emphasize the need for continuous atmospheric monitoring to advance our understanding of this rapidly changing environment.
more »
« less
- PAR ID:
- 10593679
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Atmospheres
- Volume:
- 130
- Issue:
- 8
- ISSN:
- 2169-897X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Rapid warming is likely increasing primary production and wildfire occurrence in the Arctic. Projected changes in the abundance and composition of carbonaceous aerosols during the summer are likely to impact atmospheric chemistry and climate, but our understanding of these processes is limited by sparse observations. Here, we characterize carbonaceous aerosol at two field sites, Toolik Field Station in the Interior and the Atmospheric Radiation Measurement facility at Utqiaġvik on the Arctic coast of Alaska, USA, through the summers of 2022 and 2023. We estimated particulate matter ≤2.5 micrometers (PM2.5) and particulate matter ≤10 micrometers (PM10) using laser light scattering (PurpleAir sensors) and examined total carbon (TC) and its organic carbon (OC) and elemental carbon (EC) fractions in total suspended particles (TSP). We also investigated the dominant sources of carbonaceous aerosol using air mass backward-trajectories from the National Oceanic and Atmospheric Administration (NOAA) Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model and radiocarbon source apportionment of TC. We found TC concentrations were about twice as high in the Interior than on the coast and that modern sources were the dominant sources of carbonaceous aerosol at both Toolik (95–99%) and Utqiaġvik (86–89%), with minor contributions from fossil sources. Periods of significantly elevated PM, TC, OC, and EC concentrations coincided with major boreal forest fire activity in North America that brought smoke to the region. The radiocarbon signature of EC measured at Toolik during these wildfire smoke events indicated that over 90% of the EC originated from modern sources. Our measurements demonstrate changing aerosol concentrations in the Arctic during the summer, and emphasize the need for continuous atmospheric monitoring to evaluate and advance our understanding of this rapidly changing atmospheric environment. (Manuscript in prep)more » « less
-
Abstract. Carbonaceous aerosols have great influence on the air quality, human healthand climate change. Except for organic carbon (OC) and elemental carbon (EC), brown carbon (BrC) mainly originates from biomass burning as a group of OC, with strong absorption from the visible to near-ultravioletwavelengths, and makes a considerable contribution to global warming. Largenumbers of studies have reported long-term observation of OC and ECconcentrations throughout the world, but studies of BrC based on long-termobservations are rather limited. In this study, we established atwo-wavelength method (658 and 405 nm) applied in the Sunset thermal–optical carbon analyzer. Based on a 1-year observation, we firstly investigated the characteristics, meteorological impact and transport process of OC and EC. Since BrC absorbs light at 405 nm more effectively than 658 nm, we defined the enhanced concentrations (dEC = EC405 nm − EC658 nm) and gave the possibility of providing an indicator of BrC. The receptor model and MODIS fire information were used to identify the presence of BrC aerosols. Our results showed that the carbonaceous aerosol concentrations were the highest in winter and lowest in summer. Traffic emission was an important source of carbonaceous aerosols in Nanjing. Receptor model results showed that strong local emissions were found for OC and EC; however, dEC was significantly affected by regional or long-range transport.The dEC/OC and OC/EC ratios showed similar diurnal patterns, and the dEC/OC increased when the OC/EC ratios increased, indicating strong secondarysources or biomass burning contributions to dEC. A total of two biomass burning events both in summer and winter were analyzed, and the results showed that the dEC concentrations were obviously higher on biomass burning days; however, no similar levels of the OC and EC concentrations were found both in biomass burning days and normal days in summer, suggesting that biomass burning emissions made a great contribution to dEC, and the sources of OC and EC were more complicated. Large number of open fire counts from the northwestern and southwestern areas of the study site were observed in winter and significantly contributed to OC, EC and dEC. In addition, the nearby Yangtze River Deltaarea was one of the main potential source areas of dEC, suggesting thatanthropogenic emissions could also be important sources of dEC. The resultsproved that dEC can be an indicator of BrC on biomass burning days. Ourmodified two-wavelength instrument provided more information than thetraditional single-wavelength thermal–optical carbon analyzer and gave a new idea about the measurement of BrC; the application of dEC data needs to be further investigated.more » « less
-
Abstract In recent decades, there has been a significant increase in annual area burned in California’s Sierra Nevada mountains. This rise in fire activity has prompted the need to understand how historical forest management practices affect fuel composition and emissions. Here we examined the total carbon (TC) concentration and radiocarbon abundance (Δ 14 C) of particulate matter (PM) emitted by the KNP Complex Fire, which occurred during California’s 2021 wildfire season and affected several groves of giant sequoia trees in the southern Sierra Nevada. During a 26 h sampling period, we measured concentrations of fine airborne PM (PM 2.5 ), as well as dry air mole fractions of carbon monoxide (CO) and methane (CH 4 ), using a ground-based mobile laboratory. We also collected filter samples of PM 2.5 for analysis of TC concentration and Δ 14 C. High correlation among PM 2.5 , CO, and CH 4 time series confirmed that our PM 2.5 measurements captured variability in wildfire emissions. Using a Keeling plot approach, we determined that the mean Δ 14 C of PM 2.5 was 111.6 ± 7.7‰ ( n = 12), which was considerably enriched relative to atmospheric carbon dioxide in the northern hemisphere in 2021 (−3.2 ± 1.4‰). Combining these Δ 14 C data with a steady-state one-box ecosystem model, we estimated that the mean age of fuels combusted in the KNP Complex Fire was 40 years, with a range of 29–57 years. These results provide evidence for emissions originating from woody biomass, larger-diameter fine fuels, and coarse woody debris that have accumulated over multiple decades. This is consistent with independent field observations that indicate high fire intensity contributed to widespread giant sequoia mortality. With the expanded use of prescribed fires planned over the next decade in California to mitigate wildfire impacts, our measurement approach has the potential to provide regionally-integrated estimates of the effectiveness of fuel treatment programs.more » « less
-
Abstract. Rapid Arctic climate warming, amplified relative to lower-latitude regions, has led to permafrost thaw and associated thermokarst processes. Recent work has shown permafrost is a rich source of ice-nucleating particles (INPs) that can initiate ice formation in supercooled liquid clouds. Since the phase of Arctic clouds strongly affects the surface energy budget, especially over ice-laden surfaces, characterizing INP sources in this region is critical. For the first time, we provide a large-scale survey of potential INP sources in tundra terrain where thermokarst processes are active and relate to INPs in the air. Permafrost, seasonally thawed active layer, ice wedge, vegetation, water, and aerosol samples were collected near Utqiaġvik, Alaska, in late summer and analyzed for their INP contents. Permafrost was confirmed as a rich source of INPs that was enhanced near the coast. Sensitivity to heating revealed differences in INPs from similar sources, such as the permafrost and active layer. Water, vegetation, and ice wedge INPs had the highest heat-labile percentage. The aerosol likely contained a mixture of known and unsurveyed INP types that were inferred as biological. Arctic water bodies were shown to be potential important links of sources to the atmosphere in thermokarst regions. Therefore, a positive relationship found with total organic carbon considering all water bodies gives a mechanism for future parameterization as permafrost continues to thaw and drive regional landscape shifts.more » « less
An official website of the United States government
