skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Terrestrial Spatial Distribution and Summer Abundance of Antarctic Fur Seals ( Arctocephalus gazella ) Near Palmer Station, Antarctica, From Drone Surveys
ABSTRACT The shifting climatic regime of maritime Antarctica is driving complex changes across trophic levels that are manifesting differentially across its resident species and regions. Land‐breeding pinnipeds have increased their seasonal attendance near Palmer Station since the earliest observations in the mid‐1900s, and Antarctic fur seals (Arctocephalus gazella) now represent a significant but unstudied predator population in the region during the austral summer. To characterize the timing of abundance and the fine‐scale distribution of this seasonal attendance, we carried out regular drone surveys of terrestrial habitats near Palmer Station in the austral summer of 2020. Using repeat animal counts and photogrammetric data products, we modeled fur seal abundance at survey sites over the period of observation, modeled habitat suitability based on fine‐scale topographic habitat characteristics, and estimated abundance across terrestrial habitats near Palmer Station as a function of these products. High habitat suitability was most associated with low‐slope and low‐elevation inshore terrain and with relatively dry, sun‐exposed, and wind‐sheltered locations, and estimated peak abundance occurred on March 11 (day 71) of 2020. Models estimated 2289–5544 (95% confidence interval) fur seals on land across all potential terrestrial habitats (41 discrete sites) near Palmer Station and Wylie Bay on the south coast of Anvers Island during peak abundance. This constitutes a first estimate of the aggregate timing, abundance, and distribution of Antarctic fur seals in the terrestrial habitats of this region—a critical first step in understanding the phenology and ecological role of this largely nonbreeding predator population. These findings additionally establish a baseline from which to estimate future changes in this seasonal population and its effects on sympatric terrestrial and marine biota, as the physical environment and food chain of the western Antarctic Peninsula transform under long‐term climatic changes.  more » « less
Award ID(s):
2224611
PAR ID:
10593727
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology and Evolution
Volume:
15
Issue:
4
ISSN:
2045-7758
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Janke, Axel (Ed.)
    Leopard seals ( Hydrurga leptonyx ) are top predators that can exert substantial top-down control of their Antarctic prey species. However, population trends and genetic diversity of leopard seals remain understudied, limiting our understanding of their ecological role. We investigated the genetic diversity, effective population size and demographic history of leopard seals to provide fundamental data that contextualizes their predatory influence on Antarctic ecosystems. Ninety leopard seals were sampled from the northern Antarctic Peninsula during the austral summers of 2008–2019 and a 405bp segment of the mitochondrial control region was sequenced for each individual. We uncovered moderate levels of nucleotide (π = 0.013) and haplotype (Hd = 0.96) diversity, and the effective population size was estimated at around 24,000 individuals (NE = 24,376; 95% CI: 16,876–33,126). Consistent with findings from other ice-breeding pinnipeds, Bayesian skyline analysis also revealed evidence for population expansion during the last glacial maximum, suggesting that historical population growth may have been boosted by an increase in the abundance of sea ice. Although leopard seals can be found in warmer, sub-Antarctic locations, the species’ core habitat is centered on the Antarctic, making it inherently vulnerable to the loss of sea ice habitat due to climate change. Therefore, detailed assessments of past and present leopard seal population trends are needed to inform policies for Antarctic ecosystems. 
    more » « less
  2. ABSTRACT Apex predators are typically considered dietary generalists, which often masks individual variability. However, individual specialization—consistent differences among individuals in resource use or ecological role—is common in apex predators. In some species, only a few specialized individuals can significantly impact prey populations. Leopard seals (Hydrurga leptonyx) are apex predators important to the structure and function of the Southern Ocean ecosystem. Though broadly described as generalists, little is known about their trophic ecology at the population or individual level. We analyzed δ13C and δ15N profiles in whiskers (n = 46) from 34 leopard seals in the Western Antarctic Peninsula to assess trophic variation. We also evaluated individual consistency across years using repeat samples from 7 seals over 2–10 years. We compared population and individual isotopic niche space and explored drivers of intraspecific variation in leopard seal trophic ecology. We find that leopard seals have a broad trophic niche (range: 6.96%–15.21‰) and are generalists at the population level. However, most individuals are specialists (59% for δ15N and δ13C), with only a few generalists (13% for δ15N, 6% for δ13C). Individuals also specialize at different trophic levels. Most variation in trophic ecology is driven by individual specialization, but sex and mass also contribute. We also find that some seals specialize over time, consistently foraging at the same trophic level, while others switch within and between years. This suggests some seals may disproportionately impact prey, especially when specialists consistently target specific species. Long‐term specialization by a few leopard seals likely contributed to the decline of the local Antarctic fur seal population. Our findings show the importance of examining individual specialization in leopard seals across their range to understand their impact on other prey populations. This approach should be applied to other apex predator populations, as a few specialists can significantly impact ecosystems. 
    more » « less
  3. NA (Ed.)
    The Antarctic Peninsula marine ecosystem is highly productive, with large populations of commercially and ecologically important species including Antarctic krillEuphausia superba, Adélie penguinsPygoscelis adeliae, and crabeater sealsLobodon carcinophagus. The ecology of the peninsula is rapidly changing due to accelerating climate change and fishing pressure. Systematic ecosystem surveys have focused on austral spring and summer, leaving an information gap on winter ecosystem dynamics. Using data from 5 consecutive ecosystem surveys, we quantified the composition and distribution of winter predator communities and investigated the physical and biological influences on community structure. Seabirds and marine mammals clustered into 3 communities: an ice-associated community represented by Adélie penguins and crabeater seals; a diverse marginal ice zone community dominated by fur seals and several species of seabirds including 3 petrels, kelp gullsLarus dominicanus, and Antarctic ternsSterna vittata; and an open water community consisting of southern fulmarsFulmarus glacialoidesand 4 species of petrels. These communities were distributed along an environmental gradient ranging from ice-covered, cold, saline water to ice-free, warmer, and fresher water with greater chlorophyll concentrations. Predator communities were also associated with different communities of macrozooplankton: ice-associated predators with an extremely diverse assemblage of typically mesopelagic zooplankton; marginal ice zone predators with a community of large-bodied euphausiids (E. superba, E. crystallorophias); and open water predators with a community of small-bodied euphausiids (Thysanoessa macrura). Our synthesis of integrated winter predator and macrozooplankton communities relative to sea-ice concentration provides reference points for future ecosystem assessments within this rapidly changing region. 
    more » « less
  4. Animals that display plasticity in behavioral, ecological, and morphological traits are better poised to cope with environmental disturbances. Here, we examined individual plasticity and intraspecific variation in the morphometrics, movement patterns, and dive behavior of an enigmatic apex predator, the leopard seal ( Hydrurga leptonyx ). Satellite/GPS tags and time-depth recorders were deployed on 22 leopard seals off the Western Antarctic Peninsula. Adult female leopard seals were significantly larger (454±59 kg) and longer (302±11 cm) than adult males (302±22 kg, 276±11 cm). As females were 50% larger than their male counterparts, leopard seals are therefore one of the most extreme examples of female-biased sexual size dimorphism in marine mammals. Female leopard seals also spent more time hauled-out on land and ice than males. In the austral spring/summer, three adult female leopard seals hauled-out on ice for 10+ days, which likely represent the first satellite tracks of parturition and lactation for the species. While we found sex-based differences in morphometrics and haul-out durations, other variables, including maximum distance traveled and dive parameters, did not vary by sex. Regardless of sex, some leopard seals remained in near-shore habitats, traveling less than 50 kilometers, while other leopard seals traveled up to 1,700 kilometers away from the tagging location. Overall, leopard seals were short (3.0±0.7 min) and shallow (29±8 m) divers. However, within this general pattern, some individual leopard seals primarily used short, shallow dives, while others switched between short, shallow dives and long, deep dives. We also recorded the single deepest and longest dive made by any leopard seal—1, 256 meters for 25 minutes. Together, our results showcased high plasticity among leopard seals tagged in a single location. These flexible behaviors and traits may offer leopard seals, an ice-associated apex predator, resilience to the rapidly changing Southern Ocean. 
    more » « less
  5. ABSTRACT The aftermath of the North American fur trade resulted in the depletion of many furbearing mammal populations in their native North American range while simultaneously creating invasive populations of these species through translocations worldwide. Here, we document the ongoing results of this mass ecological experiment by describing the natural history of a remnant fur colony of muskrats (Ondatra zibethicus) putatively introduced to the Isles of Shoals archipelago in the Gulf of Maine in the early 20th century. Through a combination of intensive surveys and camera trapping, we document how muskrats have been influenced by insular conditions under expectations of island biogeographic theory. Unlike other translocated muskrats that have produced successful wetland‐restricted populations in continental Europe and Asia, the Shoals muskrats appear to have shifted their habitat use and lodge building behavior and have encountered a new predator: gulls (Laridae). This Nature Note formalizes decades of anecdotal observations and provides important insight into the ecological flexibility of muskrats given the paradox of a species that is apparently now declining in its native range but expanding outside of it. 
    more » « less