Abstract We present statistical distributions of whistler‐mode chorus and hiss waves at frequencies ranging from the local proton gyrofrequency to the equatorial electron gyrofrequency (fce,eq) in Jupiter's magnetosphere based on Juno measurements. The chorus wave power spectral densities usually follow thefce,eqvariation with major wave power concentrated in the 0.05fce,eq–fce,eqfrequency range. The hiss wave frequencies are less dependent onfce,eqvariation than chorus with major power concentrated below 0.05fce,eq, showing a separation from chorus atM < 10. Our survey indicates that chorus waves are mainly observed at 5.5 < M < 13 from the magnetic equator to 20° latitude, consistent with local wave generation near the equator and damping effects. The hiss wave powers extend to 50° latitude, suggesting longer wave propagation paths without attenuation. Our survey also includes the whistler‐mode waves at high latitudes which may originate from the Io footprint, auroral hiss, or propagating hiss waves reflected to highMshells. 
                        more » 
                        « less   
                    
                            
                            Statistical Properties of Dayside Whistler‐Mode Waves at Low Latitudes Under Various Solar Wind Conditions
                        
                    
    
            Abstract While whistler‐mode waves are generated by injected anisotropic electrons on the nightside, the observed day‐night asymmetry of wave distributions raises an intriguing question about their generation on the dayside. In this study, we evaluate the distributions of whistler‐mode wave amplitudes and electrons as a function of distance from the magnetopause (MP) on the dayside from 6 to 18 hr in magnetic local time (MLT) within ±18° of magnetic latitude using the Time History of Events and Macroscale Interaction During Substorms measurements from June 2010 to August 2018. Specifically, under different levels of solar wind dynamic pressure and geomagnetic index, we conduct a statistical analysis to examine whistler‐mode wave amplitude, as well as anisotropy and phase space density (PSD) of source electrons across 1–20 keV energies, which potentially provide a source of free energy for wave generation. In coordinates relative to the MP, we find that lower‐band (0.05–0.5fce) waves occur much closer to the MP than upper‐band (0.5–0.8fce) waves, wherefceis electron cyclotron frequency. Our statistical results reveal that strong waves are associated with high anisotropy and high PSD of source electrons near the equator, indicating a preferred region for local wave generation on the dayside. Over 10–14 hr in MLT, as latitude increases, electron anisotropy decreases, while whistler‐mode wave amplitudes increase, suggesting that wave propagation from the equator to higher latitudes, along with amplification along the propagation path, is necessary to explain the observed waves on the dayside. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10593729
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Space Physics
- Volume:
- 130
- Issue:
- 4
- ISSN:
- 2169-9380
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Properties of banded, no‐gap, lower band only, and upper band only whistler mode waves (0.1–0.8fce) outside the plasmasphere are investigated using Van Allen Probes data. Our analysis shows that no‐gap whistler waves have higher occurrence rate at morning side and dayside, while banded and lower band only waves have higher occurrence rate between midnight and dawn. We also find that the occurrence rate of no‐gap whistler waves peaks at magnetic latitude |MLAT|∼8–10°, while banded waves have higher occurrence rate near the equator for°. The wave normal angle distributions of these four groups of waves are similar to previous results. The distinct local time and latitudinal distribution of no‐gap and banded whistler mode waves is critical to further understand the formation mechanism of the power minimum at half electron gyrofrequency.more » « less
- 
            Abstract Energetic particle injections are commonly observed in Jupiter's magnetosphere and have important impacts on the radiation belts. We evaluate the roles of electron injections in the dynamics of whistler‐mode waves and relativistic electrons using Juno measurements and wave‐particle interaction modeling. The Juno spacecraft observed injected electron flux bursts at energies up to 300 keV atMshell ∼11 near the magnetic equator during perijove‐31. The electron injections are related to chorus wave bursts at 0.05–0.5fcefrequencies, wherefceis the electron gyrofrequency. The electron pitch angle distributions are anisotropic, peaking near 90° pitch angle, and the fluxes are high during injections. We calculate the whistler‐mode wave growth rates using the observed electron distributions and linear theory. The frequency spectrum of the wave growth rate is consistent with that of the observed chorus magnetic intensity, suggesting that the observed electron injections provide free energy to generate whistler‐mode chorus waves. We further use quasilinear theory to model the impacts of chorus waves on 0.1–10 MeV electrons. Our modeling shows that the chorus waves could cause the pitch angle scattering loss of electrons at <1 MeV energies and accelerate relativistic electrons at multiple MeV energies in Jupiter's outer radiation belt. The electron injections also provide an important seed population at several hundred keV energies to support the acceleration to higher energies. Our wave‐particle interaction modeling demonstrates the energy flow from the electron injections to the relativistic electron population through the medium of whistler‐mode waves in Jupiter's outer radiation belt.more » « less
- 
            Abstract In this study, using Van Allen Probes observations we identify 81 events of electron flux bursts with butterfly pitch angle distributions for tens of keV electrons with close correlations with chorus wave bursts in the Earth's magnetosphere. We use the high‐rate electron flux data from Magnetic Electron Ion Spectrometer available during 2013–2019 and the simultaneous whistler‐mode wave measurements from Electric and Magnetic Field Instrument Suite and Integrated Science to identify the correlated events. The events are categorized into 67 upper‐band chorus (0.5–0.8fce) dominated events and 14 other events where lower‐band chorus (0.05–0.5fce) has modest or strong amplitudes (fcerepresents electron cyclotron frequency). Each electron flux burst correlated with chorus has a short timescale of ∼1 min or less, suggesting potential nonlinear effects. The statistical distribution of selected electron burst events tends to occur in the post‐midnight sector atL > 5 under disturbed geomagnetic conditions, and is associated with chorus waves with relatively strong magnetic wave amplitude and small wave normal angle. The frequency dependence of the electron flux peaks agrees with the cyclotron resonant condition, indicating the effects of chorus‐induced electron acceleration. Our study provides new insights into understanding the rapid nonlinear interactions between chorus and energetic electrons.more » « less
- 
            Abstract Precipitation of relativistic electrons into the Earth's atmosphere regulates the outer radiation belt fluxes and contributes to magnetosphere‐atmosphere coupling. One of the main drivers of such precipitation is electron scattering by whistler‐mode waves. Such waves typically originate at the equator, where they can resonate with and scatter sub‐relativistic (tens to a few hundred keV) electrons. However, they can occasionally propagate far away from the equator along field lines, reaching middle latitudes, where they can resonate with and scatter relativistic (>500 keV) electrons. Such a propagation is typical for the dayside, but statistically has not been found on the nightside where the waves are quickly damped along their propagation due to Landau damping. Here we explore two events of relativistic electron precipitation from low‐altitude observations on the nightside. Combining measurements of whistler‐mode waves from ground observatories, relativistic electron precipitation from low‐altitude satellites, total electron content maps from GPS receivers, and magnetic field and electron flux from equatorial satellites, we show wave ducting by plasma density gradients is the possible channel that allows the waves to reach middle latitudes and scatter relativistic electrons. We suggest that both whistler‐mode wave generation and ducting can be driven by equatorial mesoscale (with spatial scales of about one Earth radius) transient structures during nightside injections. We also compare these nightside events with observations of ducted waves and relativistic electron precipitation at the dayside, where wave generation and ducting are driven by ultra‐low‐frequency waves. This study demonstrates the potential importance of mesoscale transients in relativistic electron precipitation, but does not however unequivocally establish that ducted whistler‐mode waves are the primary cause of the observed electron precipitation.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
