skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Arrhenius law prefactor in permalloy mesoscale systems
The Arrhenius equation was used to describe the dynamics of two-state switching in mesoscale, ferromagnetic particles. Using square permalloy dots as an idealized two-state switching system, measurements of the prefactor of the Arrhenius law changed by 26 decades over barrier heights from 30 to 700 meV. Measurements of the prefactor ratios for a two well system revealed significant deviations from the common interpretation of the Arrhenius law. The anomalous Arrhenius prefactors and the prefactor ratios can be fitted to a modified model that includes entropic contributions to two-state transitions. Similar considerations are likely for the application of the Arrhenius law to other mesoscale systems.  more » « less
Award ID(s):
2103704 1609782
PAR ID:
10593737
Author(s) / Creator(s):
;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
Journal of Applied Physics
Volume:
136
Issue:
14
ISSN:
0021-8979
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The unstretched laminar flame speed (LFS) plays a key role in engine models and predictions of flame propagation. It is also an essential parameter in the study of turbulent combustion and can be directly used in many turbulent combustion models. Therefore, it is important to predict the laminar flame speed accurately and efficiently. Two improved correlations for the unstretched laminar flame speed, namely improved power law and improved Arrhenius form correlations, are proposed for iso-octane/air mixtures in this study, using simulated results for typical operating conditions for spark-ignition engines: unburned temperatures of 300-950 K, pressures of 1-120 bar, and equivalence ratios of 0.6-1.5. The original data points used to develop the new correlations were obtained using the detailed combustion kinetics for iso-octane from Lawrence Livermore National Laboratory (LLNL). The three coefficients in the improved power law correlation were determined using a methodology different from previous approaches. The improved Arrhenius form correlation employs a function of unburned gas temperature to replace the flame temperature, making the expression briefer and making the coefficients easier to calculate. The improved Arrhenius method is able to predict the trends and the values of laminar flame speed with improved accuracy over a larger range of operating conditions. The improved power law method also works well but for a relatively narrow range of predictions. The improved Arrhenius method is recommended, considering its overall fitting error was only half of that using the improved power law correlation and it was closer to the experimental measurements. Even though ϕm, the equivalence ratio at which the laminar flame speed reaches its maximum, is not monotonic with pressure, this dependence is still included, since it produces least-rich best torque (LBT). The comparisons between the improved correlations in this study and the experimental measurements and the other correlations from various researchers are shown as well. 
    more » « less
  2. We use the continuum micromagnetic framework to derive the formulas for compact skyrmion lifetime due to thermal noise in ultrathin ferromagnetic films with relatively weak interfacial Dzyaloshinskii–Moriya interaction. In the absence of a saddle point connecting the skyrmion solution to the ferromagnetic state, we interpret the skyrmion collapse event as “capture by an absorber” at microscale. This yields an explicit Arrhenius collapse rate with both the barrier height and the prefactor as functions of all the material parameters, as well as the dynamical paths to collapse. 
    more » « less
  3. While anomalous diffusion coefficients with non-Arrhenius-like temperature dependence are observed in a number of metals, a conclusive comprehensive framework of explanation has not been brought forward to date. Here, we use first-principles calculations based on density functional theory to calculate self-diffusion coefficients in the bcc metals Mo and β-Ti by coupling quasiharmonic transition state theory and large-displacement phonon calculations and show that anharmonicity from thermal expansion is the major reason for the anomalous temperature dependence. We use a modified Debye approach to quantify the thermal expansion over the entire temperature range and introduce a method to relax the vacancy structure in a mechanically unstable crystal such as β-Ti. The effect of thermal expansion is found to be crucial for the nonlinear, non-Arrhenius “anomalous” self-diffusion in both bcc systems, with β-Ti showing a 60% larger relative nonlinearity parameter than Mo. Our results point to temperature dependence in the diffusion prefactor from thermal expansion as the major origin of anomalous self-diffusion. The methodology proposed for β-Ti is general and simple enough to be applicable to other mechanically unstable crystals. 
    more » « less
  4. Abstract The intrinsic complexity of many mesoscale (10–100 nm) cellular machineries makes it challenging to elucidate their topological arrangement and transition dynamics. Here, we exploit DNA origami nanospring as a model system to demonstrate that tens of piconewton linear force can modulate higher-order conformation dynamics of mesoscale molecular assemblies. By switching between two chemical structures (i.e., duplex and tetraplex DNA) in the junctions of adjacent origami modules, the corresponding stretching or compressing chemo-mechanical stress reversibly flips the backbone orientations of the DNA nanosprings. Both coarse-grained molecular dynamics simulations and atomic force microscopy measurements reveal that such a backbone conformational switch does not alter the right-handed chirality of the nanospring helix. This result suggests that mesoscale helical handedness may be governed by the torque, rather than the achiral orientation, of nanospring backbones. It offers a topology-based caging/uncaging concept to present chemicals in response to environmental cues in solution. 
    more » « less
  5. Chemical reaction neural network (CRNN), a recently developed tool for autonomous discovery of reaction models, has been successfully demonstrated on a variety of chemical engineering and biochemical systems. It leverages the extraordinary data-fitting capacity of modern deep neural networks (DNNs) while preserving high interpretability and robustness by embedding widely applicable physical laws such as the law of mass action and the Arrhenius law. In this paper, we further developed Bayesian CRNN to not only reconstruct but also quantify the uncertainty of chemical kinetic models from data. Two methods, the Markov chain Monte Carlo algorithm and variational inference, were used to perform the Bayesian CRNN, with the latter mainly adopted for its speed. We demonstrated the capability of Bayesian CRNN in the kinetic uncertainty quantification of different types of chemical systems and discussed the importance of embedding physical laws in data-driven modeling. Finally, we discussed the adaptation of Bayesian CRNN for incomplete measurements and model mixing for global uncertainty quantification. 
    more » « less