skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Coupling between a fiber-reinforced model and a Hill-based contractile model for passive and active tissue properties of laryngeal muscles: A finite element study
In this work, a three-dimensional fiber-reinforced model was used to simulate passive stress response of vocal fold muscle tissue undergoing a series of isometric force measurement and a dynamic stretching. It was found that, with proper material constants, the fiber-reinforced model is able to reproduce literature data with acceptable deviation. A Hill-based contractile model was then coupled with the fiber-reinforced model to enable simulations of stretching-induced and activation-induced stress at the same time. For dynamic, concurrent tissue stimulation and stretching, the coupled model demonstrated a good agreement with past experimental data.  more » « less
Award ID(s):
1652632 2328040
PAR ID:
10593889
Author(s) / Creator(s):
; ;
Publisher / Repository:
Acoustical Society of America (ASA)
Date Published:
Journal Name:
The Journal of the Acoustical Society of America
Volume:
144
Issue:
3
ISSN:
0001-4966
Format(s):
Medium: X Size: p. EL248-EL253
Size(s):
p. EL248-EL253
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    A comprehensive understanding of biological tissue mechanics is crucial for designing engineered tissues that aim to recapitulate native tissue behavior. Tensile mechanics of many fiber-reinforced tissues have been shown to depend on specimen geometry, which makes it challenging to compare data between studies. In this study, a validated multiscale, structure-based finite element model was used to evaluate the effect of specimen geometry on multiscale annulus fibrosus tensile mechanics through a fiber engagement analysis. The relationships between specimen geometry and modulus, Poisson’s ratio, tissue stress–strain distributions, and fiber reorientation behaviors were investigated at both tissue and sub-tissue levels. It was observed that annulus fibrosus tissue level tensile properties and stress transmission mechanisms were dependent on specimen geometry. The model also demonstrated that the contribution of fiber–matrix interactions to tissue mechanical response was specimen size- and orientation- dependent. The results of this study reinforce the benefits of structure-based finite element modeling in studies investigating multiscale tissue mechanics. This approach also provides guidelines for developing optimal combined computational-experimental study designs for investigating fiber-reinforced biological tissue mechanics. Additionally, findings from this study help explain the geometry dependence of annulus fibrosus tensile mechanics previously reported in the literature, providing a more fundamental and comprehensive understanding of tissue mechanical behavior. In conclusion, the methods presented here can be used in conjunction with experimental tissue level data to simultaneously investigate tissue and sub-tissue scale mechanics, which is important as the field of soft tissue biomechanics advances toward studies that focus on diminishing length scales. 
    more » « less
  2. The transverse strength of fiber-reinforced composites is a matrix-dominated property whose accurate prediction iscrucial to designing and optimizing efficient, lightweight structures. State-of-the-art analytical models for compositestrength predictions do not account for fiber distribution, orientation, and curing-induced residual stress that greatlyinfluence damage initiation and failure propagation at the microscale. This work presents a novel methodology to develop an analytical solution for transverse composite strength based on computational micromechanics that enables the modeling of stress concentration due to representative volume elements (RVE) morphology and residual stress. Finiteelement simulations are used to model statistical samples of composite microstructures, generate stress-strain curves,and correlate statistical descriptors of the microscale to stress concentration factors to predict transverse strength as a function of fiber volume fraction. Tensile tests of thin plies validated this approach for carbon- and glass-reinforced composites showing promise to obtain a generalized analytical model for transverse composite strength prediction. 
    more » « less
  3. Abstract The past decade has experienced renewed interest in the physical processes that fold the developing cerebral cortex. Biomechanical models and experiments suggest that growth of the cortex, outpacing growth of underlying subcortical tissue (prospective white matter), is sufficient to induce folding. However, current models do not explain the well-established links between white matter organization and fold morphology, nor do they consider subcortical remodeling that occurs during the period of folding. Here we propose a framework by which cortical folding may induce subcortical fiber growth and organization. Simulations incorporating stress-induced fiber elongation indicate that subcortical stresses resulting from folding are sufficient to induce stereotyped fiber organization beneath gyri and sulci. Model predictions are supported by high-resolution ex vivo diffusion tensor imaging of the developing rhesus macaque brain. Together, results provide support for the theory of cortical growth-induced folding and indicate that mechanical feedback plays a significant role in brain connectivity. 
    more » « less
  4. Abstract Understanding the stress distribution within fiber‐reinforced polymers (FRPs) is critical to extending their operational lifespan. The integration of mechanoresponsive molecular force probes, referred to as mechanophores, presents a potential solution by enabling direct monitoring of stress concentrations. In this study, spiropyran (SP) mechanophores (MPs) are embedded within a polydimethylsiloxane (PDMS) matrix to visualize stress localization during loading within a single fiber‐reinforced framework. The SP mechanophore undergoes a transition from a non‐fluorescent state to an active state (merocyanine) through isomerization in response to mechanical forces. Using a single fiber mounted axially within the matrix, the fundamental failure modes observed in conventional fiber‐reinforced composites are replicated. Samples are strained under uniaxial tensile loading along the fiber direction and the localization of stresses is observed via MP activation. Stresses are concentrated in the matrix near the fiber region that gradually decreases away from the fiber surface. Confocal microscopy is used to visualize mechanophore activation and quantitatively assess fluorescence intensity. Finite element modeling is used to develop a calibration to quantify the stresses based on the observed fluorescence intensity. These outcomes underscore the viability of employing these mechanoresponsive molecules as a potential means to visualize real‐time stress distribution, thereby facilitating the design of high‐performance composites. 
    more » « less
  5. Uncontrolled curing-induced residual stress and strain are significant limitations to the efficient design of thermoset composites that compromise their structural durability and geometrical tolerance. Experimentally validated process modeling for the evaluation of processing parameter contributions to the residual stress build-up is crucial to identify residual stress mitigation strategies and enhance structural performance. This work presents an experimentally validated novel numerical approach based on higher-order finite elements for the process modeling of fiber-reinforced thermoset polymers across two composite characteristic length scales, the micro and macro-scale levels. The cure kinetics is described using an auto-catalytic phenomenological model. An instantaneous linear-elastic constitutive law, informed by time-dependent material characterization, is used to evaluate the stress state evolution as a function of the degree of cure and time. Micromechanical modeling is based on Representative Volume Elements (RVEs) that account for random fiber distribution verified against traditional 3D FE analysis. 0/90 laminate testing at the macroscale validates the proposed approach with an accuracy of 9%. 
    more » « less