skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Curing-Induced Residual Stress and Strain in Thermoset Composites
Uncontrolled curing-induced residual stress and strain are significant limitations to the efficient design of thermoset composites that compromise their structural durability and geometrical tolerance. Experimentally validated process modeling for the evaluation of processing parameter contributions to the residual stress build-up is crucial to identify residual stress mitigation strategies and enhance structural performance. This work presents an experimentally validated novel numerical approach based on higher-order finite elements for the process modeling of fiber-reinforced thermoset polymers across two composite characteristic length scales, the micro and macro-scale levels. The cure kinetics is described using an auto-catalytic phenomenological model. An instantaneous linear-elastic constitutive law, informed by time-dependent material characterization, is used to evaluate the stress state evolution as a function of the degree of cure and time. Micromechanical modeling is based on Representative Volume Elements (RVEs) that account for random fiber distribution verified against traditional 3D FE analysis. 0/90 laminate testing at the macroscale validates the proposed approach with an accuracy of 9%.  more » « less
Award ID(s):
2145387
PAR ID:
10613707
Author(s) / Creator(s):
;
Publisher / Repository:
ChemrXiv
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The effect of residual stress build-up on the transverse properties of thermoset composites is studied through direct and inverse process modeling approaches. Progressive damage analysis is implemented to characterize composite stiffness and strength of cured composites microstructures. A size effect study is proposed to define the appropriate dimensions of Representative Volume Elements (RVEs). A comparison between periodic (PBCs) and flat (FBCs) boundary conditions during curing is performed on converged RVEs to establish computationally efficient methodologies. Transverse properties are analyzed as a function of the fiber packing through the nearest fiber distance statistical descriptor. A reasonable mechanical equivalence is achieved for RVEs consisting of 40 fibers. It has been found that process-induced residual stresses and fiber packing significantly contribute to the scatter in composites transverse strength. Variation of ±5% in average strength and 18% in standard deviation are observed with respect to ideally cured RVEs that neglect residual stresses. It is established that process modeling is needed to optimize the residual stress state and improve composite performance. 
    more » « less
  2. Thermoset polymer composite structures are heavily used in the aerospace, defense, transport, and energy sectors due to their lightweight and high-performance behavior. Thermoset polymer resins require external heat for manufacturing/curing. The behavior of these polymer composite materials is highly dependent on curing process as it affects evolution of material properties as well as residual stresses and deformation. Various cure process parameters, mainly related to cure thermal cycle, need to be optimized to get the desired properties of these structures. In this paper, the polymer cure process is explicitly modeled through finite element method. Its effects at the structural level are captured by modeling thermo-chemical-mechanical analysis through multiple length scales. The multi-scale analysis is carried out by surrogate models to reduce run time. In this study, non-dominated sorting genetic algorithm II is used for multi-objective cure process optimization. The objectives are to minimize the spring-in angle and minimize the process time with achieving degree of cure above given requirement. Insights from such optimization can be utilized by product designers as well as manufacturers to take timely decisions to improve the performance of these composite structures. 
    more » « less
  3. Chemical shrinkage in thermosetting polymers drives residual stress development and induces residual deformation in composite materials. Accurate characterization of chemical shrinkage during curing is therefore vital to minimize residual stresses through process modeling and optimize composite performance. This work introduces a novel methodology to measure the pre- and post-gelation chemical shrinkage of an epoxy resin using three-dimensional digital image correlation (3D-DIC). Differential scanning calorimetry (DSC) is employed to calculate reaction kinetics and correlate chemical shrinkage with the degree of cure. Rheology experiments are conducted to quantify gelation and validate post-gelation. 3D-DIC post-gelation results show excellent agreement with rheology. Pre-gelation results show the effect of the in-situ curing in the proximity of constraints on the global strain behavior. This work introduced an innovative approach to characterize the chemical shrinkage of thermosets during curing, which will enable accurate residual stress prediction for enhancing thermoset composite performance and provide insight into the in-situ polymer behavior during processing. 
    more » « less
  4. The transverse strength of fiber-reinforced composites is a matrix-dominated property whose accurate prediction iscrucial to designing and optimizing efficient, lightweight structures. State-of-the-art analytical models for compositestrength predictions do not account for fiber distribution, orientation, and curing-induced residual stress that greatlyinfluence damage initiation and failure propagation at the microscale. This work presents a novel methodology to develop an analytical solution for transverse composite strength based on computational micromechanics that enables the modeling of stress concentration due to representative volume elements (RVE) morphology and residual stress. Finiteelement simulations are used to model statistical samples of composite microstructures, generate stress-strain curves,and correlate statistical descriptors of the microscale to stress concentration factors to predict transverse strength as a function of fiber volume fraction. Tensile tests of thin plies validated this approach for carbon- and glass-reinforced composites showing promise to obtain a generalized analytical model for transverse composite strength prediction. 
    more » « less
  5. Residual stresses are detrimental to composite structures as they induce processing defects like debonding, delamination, and matrix cracking which significantly decrease their load-bearing capability. In this research, a new in-situ approach using digital image correlation is utilized to analyze the effect of the cure cycle modification on residual stress evolution during processing. It was found that the modified cure cycle comprising abrupt cooling after gelation reduces the residual stresses. Five different layup configurations are investigated to examine the effect of fiber direction. A maximum average residual stress reduction of 31.8% is observed for the balanced unsymmetric [30/-30/60/-60] laminate. The residual stress reduction results in an increase in failure strength between 4 and 12% in the different layups and can lead up to a 22% increase in first-ply failure strength. 
    more » « less