skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A diamond anvil microassembly for Joule heating and electrical measurements up to 150 GPa and 4000 K
When diamond anvil cell (DAC) sample chambers are outfitted with both thermal insulation and electrodes, two cutting-edge experimental methods are enabled: Joule heating with spectroradiometric temperature measurement and electrical resistance measurements of samples heated to thousands of kelvin. The accuracy of temperature and resistance measurements, however, often suffers from poor control of the shape and location of the sample, electrodes, and thermal insulation. Here, we present a recipe for the reproducible and precise fabrication of DAC sample, electrodes, and thermal insulation using a three-layer microassembly. The microassembly contains two potassium chloride thermal insulation layers, four electrical leads, a sample, and a buttressing layer made of polycrystalline alumina. The sample, innermost electrodes, and buttress layer are fabricated by focused-ion-beam milling. Three iron samples are presented as proof of concept. Each is successfully compressed and pulsed Joule heated while maintaining a four-point probe configuration. The highest pressure-temperature condition achieved is ∼150 GPa and 4000 K.  more » « less
Award ID(s):
2125954
PAR ID:
10593956
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
Journal of Applied Physics
Volume:
135
Issue:
9
ISSN:
0021-8979
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Microscale heating platforms capable of generating localized temperature rises can find applications in wide‐ranging areas including nanomaterials synthesis and microscale thermometry. Here, commercially available optical calibration samples called Ronchi rulings, which consist of an array of chrome lines on a float glass substrate, are demonstrated to serve as reconfigurable Joule heaters. Electrical connections are formed by wire bonding onto the chrome to Joule heat individual lines and monitor their temperature rises using electrical resistance thermometry. Tests across multiple heater lines demonstrate a negative temperature coefficient of resistance with an average value of −6.93 × 10−4 ± 8.18 × 10−5 K−1. Under Joule heating, temperature rises exceeding 100 K are measured. To characterize the temperature gradient across the chrome line and glass, a noncontact optical thermometry technique based on the temperature‐dependent luminescence of upconverting nanoparticles (UCNPs) is used, producing temperature measurements that match finite element simulations. A 1:1 area ratio between the chrome lines and glass offers a high probability of finding UCNPs across both materials. The temperature rise on chrome determined from luminescence thermometry, electrical resistance thermometry, and simulations are also consistent. Furthermore, over 50% of the peak temperature rise is maintained along the neighboring glass region. 
    more » « less
  2. Abstract BackgroundThermomechanical testing of nanomaterials is essential to assess their performance in applications where thermal and mechanical loads occur simultaneously. However, developing a multi-physics testing platform for nanomaterials that integrates temperature control, displacement control, and force sensing remains challenging due to the interference between heating and mechanical testing components. ObjectiveThis work aims to develop a novel microelectromechanical system-based platform for in situ thermomechanical testing of nanomaterials with displacement control and precise temperature regulation. MethodsThe platform integrates a high-stiffness thermal actuator, Joule heating elements, and a capacitive displacement sensor, along with sample stage heaters featuring thermal insulation and thermal expansion compensation structures. Finite element analysis was used to optimize the design and minimize thermomechanical interference. Heating performance was characterized using Raman spectroscopy and resistance measurements. ResultsDisplacement control and precise localized temperature control are achieved, overcoming limitations of transient heat transfer and thermal drift observed in previous systems. Its performance is demonstrated through in situ thermomechanical tensile testing of silver nanowires, showcasing its capability for nanoscale material characterization. ConclusionsThe developed microelectromechanical system platform enables thermomechanical investigation of size-dependent phenomena in nanomaterials, such as phase transitions and temperature-dependent fracture. Its displacement control and localized temperature regulation, combined with in-situ observation, provide a powerful tool for understanding nanoscale deformation and fracture mechanisms. 
    more » « less
  3. Decades of measurements of the thermophysical properties of hot metals show that pulsed Joule heating is an effective method to heat solid and liquid metals that are chemically reactive or difficult to contain. To extend such measurements to hundreds of GPa pressure, pulsed heating methods have recently been integrated with diamond anvil cells. The recent design used a low-side switch and active electrical sensing equipment that was prone to damage and measurement error. Here, we report the design and characterization of new electronics that use a high-side switch and robust, passive electrical sensing equipment. The new pulse amplifier can heat ∼5 to 50 μm diameter metal wires to thousands of kelvin at tens to hundreds of GPa using diamond anvil cells. Pulse durations and peak currents can each be varied over three orders of magnitude, from 5 µs to 10 ms and from 0.2 to 200 A. The pulse amplifier is integrated with a current probe. Two voltage probes attached to the body of a diamond anvil cell are used to measure voltage in a four-point probe geometry. The accuracy of four-point probe resistance measurements for a dummy sample with 0.1 Ω resistance is typically better than 5% at all times from 2 µs to 10 ms after the beginning of the pulse. 
    more » « less
  4. This research explores the responses of reconstituted Kaolin clay samples due to simulations of wildfires in the laboratory using heat guns for control heating. Two laboratory geophysical methods, bender element and electrical resistivity, were used to detect the changes in soil’s mechanical (shear modulus, Gmax) and hydraulic properties (electrical resistivity, ρ) in real time, while soil specimens were heated, up to 60°C, to partially represent the temperatures in a wildfire. Measurements were compared with samples that had not been heated. Results show that the Gmax values for the controlled samples were about 25% greater than those that were heated, which implied that heating causes soil strength reduction. Additionally, the electrical resistivity for the controlled samples was 55% higher than that of the heated samples, meaning that heating caused the kaolin specimens to be less permeable. Correlations between Gmax versus temperature (T) and water content were developed. Results also allowed for the development of electrical resistivity, temperature, and water content correlations. 
    more » « less
  5. Abstract The thermal conductivities of mantle and core materials have a major impact on planetary evolution, but their experimental determination requires precise knowledge of sample thickness at high pressure. Despite its importance, thickness in most diamond anvil cell (DAC) experiments is not measured but inferred from equations of state, assuming isotropic contraction upon compression or assuming isotropic expansion upon decompression. Here we provide evidence that in DAC experiments both assumptions are invalid for a range of mechanically diverse materials (KCl, NaCl, Ar, MgO, silica glass, Al2O3). Upon compression, these samples are ∼30–50% thinner than expected from isotropic contraction. Most surprisingly, all the studied samples continue to thin upon decompression to 10–20 GPa. Our results partially explain some discrepancies among the highly controversial thermal conductivity values of iron at Earth's core conditions. More generally, we suggest thatin situcharacterization of sample geometry is essential for conductivity measurements at high pressure. 
    more » « less