ABSTRACT Technologies for large‐scale manufacturing of viral vectors for gene therapies, such as tangential flow filtration and membrane chromatography, are under development. In these early stages of process development, techno‐economic analyses are useful for identifying membrane properties yielding the greatest impact on process performance. In this study, we adapted a techno‐economic framework used for monoclonal antibody capture for adeno‐associated viral vector purification. We added mechanistic models to simulate flux decline during harvesting and separating full and empty capsids during polishing. Graphical user interfaces were added to help users explore the design search space. We selected a base process and manipulated selected variables to see their impact on large‐scale manufacturing performance. These sensitivity analyses revealed that, under the selected process conditions, increasing module capacity reduces cost of goods more effectively than increasing operational flux in tangential flow membrane filtration modules for virus harvesting. Membrane chromatography columns with relatively low dynamic binding capacity (DBC) and short residence time (RT) offered similar or better economic performance than those with high DBC and long RT. Additionally, the difference in equilibrium solid‐phase concentration between full and empty capsids as a function of salt concentration significantly affects purity.
more »
« less
A Novel Method for Separating Full and Empty Adeno-Associated Viral Capsids Using Ultrafiltration
Adeno-associated viral vectors (AAVs) are the predominant viral vectors used for gene therapy applications. A significant challenge in obtaining effective doses is removing non-therapeutic empty viral capsids lacking DNA cargo. Current methods for separating full (gene-containing) and empty capsids are challenging to scale, produce low product yields, are slow, and are difficult to operationalize for continuous biomanufacturing. This communication demonstrates the feasibility of separating full and empty capsids by ultrafiltration. Separation performance was quantified by measuring the sieving coefficients for full and empty capsids using ELISA, qPCR, and an infectivity assay based on the live cell imaging of green fluorescent protein expression. We demonstrated that polycarbonate track-etched membranes with a pore size of 30 nm selectively permeated empty capsids to full capsids, with a high recovery yield (89%) for full capsids. The average sieving coefficients of full and empty capsids obtained through ELISA/qPCR were calculated as 0.25 and 0.49, indicating that empty capsids were about twice as permeable as full capsids. Establishing ultrafiltration as a viable unit operation for separating full and empty AAV capsids has implications for developing the scale-free continuous purification of AAVs.
more »
« less
- Award ID(s):
- 2218054
- PAR ID:
- 10594081
- Publisher / Repository:
- MPDI
- Date Published:
- Journal Name:
- Membranes
- Volume:
- 14
- Issue:
- 9
- ISSN:
- 2077-0375
- Page Range / eLocation ID:
- 194
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Adeno-associated virus (AAV) capsids are among the leading gene delivery platforms used to treat a vast array of human diseases and conditions. AAVs exist in a variety of serotypes due to differences in viral protein (VP) sequences, with distinct serotypes targeting specific cells and tissues. As the utility of AAVs in gene therapy increases, ensuring their specific composition is imperative for correct targeting and gene delivery. From a quality control perspective, current analytical tools are limited in their selectivity for viral protein (VP) subunits due to their sequence similarities, instrumental difficulties in assessing the large molecular weights of intact capsids, and the uncertainty in distinguishing empty and filled capsids. To address these challenges, we combine two distinct analytical workflows that assess the intact capsids and VP subunits separately. First, selective temporal overview of resonant ions (STORI)-based charge detection-mass spectrometry (CD-MS) was applied for characterization of the intact capsids. Liquid chromatography, ion mobility spectrometry, and mass spectrometry (LC-IMS-MS) separations were then used for capsid denaturing measurements. This multi-method combination was applied to 3 AAV serotypes (AAV2, AAV6, and AAV8) to evaluate their intact empty and filled capsid ratios and then examine the distinct VP sequences and modifications present.more » « less
-
Abstract Prochlorococcus cells are the numerically dominant phototrophs in the open ocean. Cyanophages that infect them are a notable fraction of the total viral population in the euphotic zone, and, as vehicles of horizontal gene transfer, appear to drive their evolution. Here we examine the propensity of three cyanophages—a podovirus, a siphovirus, and a myovirus—to mispackage host DNA in their capsids while infecting Prochlorococcus, the first step in phage-mediated horizontal gene transfer. We find the mispackaging frequencies are distinctly different among the three phages. Myoviruses mispackage host DNA at low and seemingly fixed frequencies, while podo- and siphoviruses vary in their mispackaging frequencies by orders of magnitude depending on growth light intensity. We link this difference to the concentration of intracellular reactive oxygen species and protein synthesis rates, both parameters increasing in response to higher light intensity. Based on our findings, we propose a model of mispackaging frequency determined by the imbalance between the production of capsids and the number of phage genome copies during infection: when protein synthesis rate increase to levels that the phage cannot regulate, they lead to an accumulation of empty capsids, in turn triggering more frequent host DNA mispackaging errors.more » « less
-
Amphibians,byvirtueoftheirphylogeneticposition,provideinvaluableinsightsonnervoussystemevolution, development, and remodeling. The genetic toolkit for amphibians, however, remains limited. Recombinant adeno-associated viral vectors (AAVs) are a powerful alternative to transgenesis for labeling and manipulating neurons. Although successful in mammals,AAVshaveneverbeenshowntotransduceamphibiancells efficiently. We screened AAVs in three amphibian species—the frogs Xenopus laevis and Pelophylax bedriagae andthesalamanderPleurodeles waltl—and identified at least two AAV serotypes per speciesthat transduceneurons.Indevelopingamphibians,AAVslabeledgroupsofneuronsgeneratedatthesametimeduring development. In the mature brain, AAVrg retrogradely traced long-range projections. Our study introduces AAVs as a tool for amphibian research, establishes a generalizable workflow for AAV screening in new species, and expands opportunities for cross-species comparisons of nervous system development, function, and evolution.more » « less
-
Gene therapies have shown great promise for the potential treatment of a broad range of diseases. Adeno-associated viruses (AAVs) are popular gene vectors because of their ability to target specific tissues, and they have demonstrated high transduction efficiencies in multiple neurological targets. While these therapeutics hold great promise, their biomanufacturing has limited potential cost-reduction and more widespread adoption. Herein, we report the preliminary development of an immunosensor for measuring the titer of adeno-associated virus 2 (AAV2), which may be deployed for rapid quantification of product yield during AAV biomanufacturing. We functionalized an interdigitated electrode array with anti-AAV2 antibodies, and electrochemical impedance spectroscopy was employed to investigate the response to AAV2 titer. A Faradaic sensing principle was utilized, in which the charge transfer resistance (Rct) of an electrochemical reporter was monitored after capture of AAV2 on the surface of the sensor. A linear response was measured over titers 1012 - 1013 capsids/mL.more » « less
An official website of the United States government

