Abstract The hydrogenolysis of polymers is emerging as a promising approach to deconstruct plastic waste into valuable chemicals. Yet, the complexity of plastic waste, including multilayer packaging, is a significant barrier to handling realistic waste streams. Herein, we reveal fundamental insights into a new chemical route for transforming a previously unaddressed fraction of plastic waste – poly(ethylene‐co‐vinyl alcohol) (EVOH) and related polymer blends – into alkane products. We report that Ru/ZrO2is active for the concurrent hydrogenolysis, hydrogenation, and hydrodeoxygenation of EVOH and its thermal degradation products into alkanes (C1−C35) and water. Detailed reaction data, product analysis, and catalyst characterization reveal that the in‐situ thermal degradation of EVOH forms aromatic intermediates that are detrimental to catalytic activity. Increased hydrogen pressure promotes hydrogenation of these aromatics, preventing catalyst deactivation and improving alkane product yields. Calculated apparent rates of C−C scission reveal that the hydrogenolysis of EVOH is slower than low‐density polyethylene. We apply these findings to achieve hydrogenolysis of EVOH/polyethylene blends and elucidate the sensitivity of hydrogenolysis catalysts to such blends. Overall, we demonstrate progress towards efficient catalytic processes for the hydroconversion of waste multilayer film plastic packaging into valuable products.
more »
« less
Two-step conversion of polyethylene into recombinant proteins using a microbial platform
Abstract BackgroundThe increasing prevalence of plastic waste combined with the inefficiencies of mechanical recycling has inspired interest in processes that can convert these waste streams into value-added biomaterials. To date, the microbial conversion of plastic substrates into biomaterials has been predominantly limited to polyhydroxyalkanoates production. Expanding the capabilities of these microbial conversion platforms to include a greater diversity of products generated from plastic waste streams can serve to promote the adoption of these technologies at a larger scale and encourage a more sustainable materials economy. ResultsHerein, we report the development of a new strain ofPseudomonasbacteria capable of converting depolymerized polyethylene into high value bespoke recombinant protein products. Using hexadecane, a proxy for depolymerized polyethylene, as a sole carbon nutrient source, we optimized media compositions that facilitate robust biomass growth above 1 × 109 cfu/ml, with results suggesting the benefits of lower hydrocarbon concentrations and the use of NH4Cl as a nitrogen source. We genomically integrated recombinant genes for green fluorescent protein and spider dragline-inspired silk protein, and we showed their expression inPseudomonas aeruginosa, reaching titers of approximately 10 mg/L when hexadecane was used as the sole carbon source. Lastly, we demonstrated that chemically depolymerized polyethylene, comprised of a mixture of branched and unbranched alkanes, could be converted into silk protein byPseudomonas aeruginosaat titers of 11.3 ± 1.1 mg/L. ConclusionThis work demonstrates a microbial platform for the conversion of a both alkanes and plastic-derived substrates to recombinant, protein-based materials. The findings in this work can serve as a basis for future endeavors seeking to upcycle recalcitrant plastic wastes into value-added recombinant proteins.
more »
« less
- Award ID(s):
- 2036768
- PAR ID:
- 10594093
- Publisher / Repository:
- BioMed Central
- Date Published:
- Journal Name:
- Microbial Cell Factories
- Volume:
- 22
- Issue:
- 1
- ISSN:
- 1475-2859
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Protein‐based biomaterials have played a key role in tissue engineering, and additional exciting applications as self‐healing materials and sustainable polymers are emerging. Over the past few decades, recombinant expression and production of various fibrous proteins from microbes have been demonstrated; however, the resulting proteins typically must then be purified and processed by humans to form usable fibers and materials. Here, we show that the Gram‐positive bacteriumBacillus subtiliscan be programmed to secrete silk through its translocon via an orthogonal signal peptide/peptidase pair. Surprisingly, we discover that this translocation mechanism drives the silk proteins to assemble into fibers spontaneously on the cell surface, in a process we call secretion‐catalyzed assembly (SCA). Secreted silk fibers form self‐healing hydrogels with minimal processing. Alternatively, the fibers retained on the membrane provide a facile route to create engineered living materials fromBacilluscells. This work provides a blueprint to achieve autonomous assembly of protein biomaterials in useful morphologies directly from microbial factories.more » « less
-
Background Silk proteins have emerged as versatile biomaterials with unique chemical and physical properties, making them appealing for various applications. Among them, spider silk, known for its exceptional mechanical strength, has attracted considerable attention. Recombinant production of spider silk represents the most promising route towards its scaled production; however, challenges persist within the upstream optimization of host organisms, including toxicity and low yields. The high cost of downstream cell lysis and protein purification is an additional barrier preventing the widespread production and use of spider silk proteins. Gram-positive bacteria represent an attractive, but underexplored, microbial chassis that may enable a reduction in the cost and difficulty of recombinant silk production through attributes that include, superior secretory capabilities, frequent GRAS status, and previously established use in industry. Results In this study, we explore the potential of gram-positive hosts by engineering the first production and secretion of recombinant spider silk in the Bacillus genus. Using an industrially relevant B. megaterium host, it was found that the Sec secretion pathway enables secretory production of silk, however, the choice of signal sequence plays a vital role in successful secretion. Attempts at increasing secreted titers revealed that multiple translation initiation sites in tandem do not significantly impact silk production levels, contrary to previous findings for other gram-positive hosts and recombinant proteins. Notwithstanding, targeted amino acid supplementation in minimal media was found to increase production by 135% relative to both rich media and unaltered minimal media, yielding secretory titers of approximately 100 mg/L in flask cultures. Conclusion It is hypothesized that the supplementation strategy addressed metabolic bottlenecks, specifically depletion of ATP and NADPH within the central metabolism, that were previously observed for an E. coli host producing the same recombinant silk construct. Furthermore, this study supports the hypothesis that secretion mitigates the toxicity of the produced silk protein on the host organism and enhances host performance in glucose-based minimal media. While promising, future research is warranted to understand metabolic changes more precisely in the Bacillus host system in response to silk production, optimize signal sequences and promoter strengths, investigate the mechanisms behind the effect of tandem translation initiation sites, and evaluate the performance of this system within a bioreactor.more » « less
-
Substrate identification of putative NCS1 and NCS2 nucleobase transporters in Pseudomonas aeruginosaMathee, Kalai; Dandekar, Ajai A (Ed.)ABSTRACT Pseudomonas aeruginosais an opportunistic pathogen that can salvage nucleobases from the environment to conserve nutrients that would otherwise be spent onde novonucleotide biosynthesis. However, little is known regarding the substrate specificity of the 13 putative nucleobase transporters inP. aeruginosa. Here, using a combination of genetic and chemical approaches, we report substrate identifications for 10 putative nucleobase transporters inP. aeruginosa. Specifically, we individually expressed each transporter in a genetic background lacking all 13 putative nucleobase transporters and quantified growth on a panel of 10 nucleobases as sole nitrogen sources. We confirmed these expression-based substrate identifications using targeted genetic knockouts. In a complementary approach, we utilized four toxic nucleobase antimetabolites to characterize antimicrobial activity in these same strains. We identified the sole allantoin transporter as well as transporters for guanine, xanthine, uric acid, cytosine, thymine, uracil, and dihydrouracil. Furthermore, we associated at least five nucleobase transporters with hypoxanthine, which has been recently reported to be an antibiofilm cue inP. aeruginosa. These results provide an initial characterization of the putative nucleobase transporters inP. aeruginosa, significantly advancing our understanding of nucleobase transport in this clinically relevant organism. IMPORTANCEPseudomonas aeruginosais a frequently multidrug-resistant opportunistic pathogen and one of the most common causes of healthcare-acquired infections. While nucleobases are known to support growth in nutrient-limited conditions, recent work showed that adenine and hypoxanthine can also decreaseP. aeruginosabiofilm formation by disrupting c-di-GMP metabolism. Thus, nucleobase transport may be relevant to multiple aspects ofP. aeruginosabiology and pathogenesis. However, there is currently little known about the transport of nucleobases inP. aeruginosa. Our work reports initial substrate identifications for 10 putative nucleobase transporters inP. aeruginosa, providing new tools to address previously difficult-to-test hypotheses relating to nucleobase transport in this organism.more » « less
-
Bondy-Denomy, Joseph (Ed.)ABSTRACT Many bacterial histidine kinases work in two-component systems that combine into larger multi-kinase networks. NahK is one of the kinases in the GacS Multi-Kinase Network (MKN), which is the MKN that controls biofilm regulation in the opportunistic pathogenPseudomonas aeruginosa. This network has also been associated with regulating many virulence factorsP. aeruginosasecretes to cause disease. However, the individual role of each kinase is unknown. In this study, we identify NahK as a novel regulator of the phenazine pyocyanin (PYO). Deletion ofnahKleads to a fourfold increase in PYO production, almost exclusively through upregulation of phenazine operon two (phz2). We determined that this upregulation is due to mis-regulation of allP. aeruginosaquorum-sensing (QS) systems, with a large upregulation of thePseudomonasquinolone signal system and a decrease in production of the acyl-homoserine lactone-producing system,las. In addition, we see differences in expression of quorum-sensing inhibitor proteins that align with these changes. Together, these data contribute to understanding how the GacS MKN modulates QS and virulence and suggest a mechanism for cell density-independent regulation of quorum sensing. IMPORTANCEPseudomonas aeruginosais a Gram-negative bacterium that establishes biofilms as part of its pathogenicity.P. aeruginosainfections are associated with nosocomial infections. As the prevalence of multi-drug-resistantP. aeruginosaincreases, it is essential to understand underlying virulence molecular mechanisms. Histidine kinase NahK is one of several kinases inP. aeruginosaimplicated in biofilm formation and dispersal. Previous work has shown that the nitric oxide sensor, NosP, triggers biofilm dispersal by inhibiting NahK. The data presented here demonstrate that NahK plays additional important roles in theP. aeruginosalifestyle, including regulating bacterial communication mechanisms such as quorum sensing. These effects have larger implications in infection as they affect toxin production and virulence.more » « less
An official website of the United States government

