skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Synoptic Patterns Associated with Turbulent Fluxes of Water Vapor and Carbon Dioxide in Northern New England
Abstract Synoptic-scale weather patterns affect local meteorological variables, such as vapor pressure deficit (VPD), temperature, and insolation, that are known to influence evapotranspiration (ET) and net CO2flux (FC). However, little research exists that links synoptic-scale patterns to ET and FC. In this study, we seek to understand how synoptic-scale patterns influence ET and FC for the temperate mixed-hardwood forest at Hubbard Brook Experimental Forest (HBEF) in New Hampshire, United States. We use self-organizing maps to identify the most common synoptic pattern types impacting HBEF during the 2016–21 growing seasons and determine how ET and FC vary with these synoptic pattern types. Our analysis reveals that high ET and most negative FC days occur for the weather pattern phases starting after the departure of a low pressure system and through the approach of a high pressure system. ET and the magnitude of FC remain high if the latitude of the high is south of HBEF but moderate (especially for ET) if the high is to the north and causes east winds to advect a humid maritime air mass over the region. ET is lowest when HBEF is located between high pressure to the east and low pressure to the west, which causes humid southerly flow to decrease VPD and insolation. Meanwhile, FC magnitude may remain high when this pattern occurs in June–July when photosynthetic capacity is at its highest. Our results suggest that future changes in the frequency of passing low pressure systems and pathways of high pressure systems could impact the fluxes of water and CO2from this forest. Significance StatementFor decades, we have understood that local meteorological variables, such as insolation, temperature, and relative humidity, have a strong influence on a forest ecosystem’s use of water and carbon dioxide, two important greenhouse gases. We also understand that large-scale weather patterns and their interactions with forests shape these local meteorological conditions. This research advances knowledge of the relationship between various large-scale weather patterns and their impacts on forest’s use of water and carbon dioxide via local meteorological variables for a mixed-hardwood forest in the Northeastern United States. Connecting these results to the frequency of these various large-scale weather pattern types projected by global climate models will help us predict how forest ecosystems will influence water vapor and carbon dioxide concentrations and thus impact global climate.  more » « less
Award ID(s):
2224545
PAR ID:
10594127
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of Hydrometeorology
Volume:
26
Issue:
6
ISSN:
1525-755X
Format(s):
Medium: X Size: p. 661-673
Size(s):
p. 661-673
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Forests significantly influence regional and global water cycles through transpiration, which is affected by meteorological variables, soil water availability, and stand and site characteristics. Variable retention harvesting (VRH) is a forest management practice in which varying densities of trees, such as 55% and 33%, are retained after thinning or harvesting. These trees can be grouped together or evenly distributed. VRH aims to enhance forest growth, improve biodiversity, preserve ecosystem functions, and generate economic revenue from harvested timber. Application of VRH treatment in forest ecosystems can potentially impact the response of forest transpiration to environmental controls. This study analyzed the impacts of four different VRH treatments on sap flow velocity (SV) in an 83‐year‐old red pine (Pinus resinosa Ait.) plantation forest in the Great Lakes region in Canada. These VRH treatments included 55% aggregated (55A), 55% dispersed (55D), 33% aggregated (33A), and 33% dispersed (33D) basal area retention, and an unharvested control (CN) plot, 1 ha each. Analysis of counterclockwise hysteresis loops between SV and meteorological variables showed larger hysteresis areas between SV and photosynthetically active radiation (PAR) than vapor pressure deficit (VPD) and air temperature (Tair), particularly in clear sky and warm temperatures in the summer. It demonstrated that PAR was the primary control on SV across VRH treatments, followed by VPD andTair. Larger hysteresis loop areas and higher SV values were observed in the CN and 55D treatments, with lower values found in the 55A, 33D, and 33A plots. This suggests that maintaining dispersed retention of 55% basal area (55D) is the optimal forest management practice that can be utilized to enhance transpiration and forest growth. These findings will assist forest managers and other stakeholders to adopt sustainable forest management practices, thereby enhancing forest growth, water use efficiency, and resilience to climate change. Additionally, these practices will contribute to nature‐based climate solutions. 
    more » « less
  2. Abstract Cold‐air pooling and associated air temperature inversions are important features of mountain landscapes, but incomplete understanding of their controlling factors hinders prediction of how they may mediate potential future climate changes at local scales. We evaluated how topographic and forest canopy effects on insolation and local winds altered the expression of synoptic‐scale meteorological forcing on near‐surface air temperature inversions and how these effects varied by time of day, season, and spatial scale. Using ~13 years of hourly temperature measurements in forest canopy openings and under the forest canopy at the H.J. Andrews Experimental Forest in the western Cascade Range of Oregon (USA), we calculated air temperature gradients at the basin scale (high vs. low elevation) and at the cross‐valley scale for two transects that differed in topography and forest canopy cover. ERA5 and NCEP NCAR R1 reanalysis data were used to evaluate regional‐scale conditions. Basin and cross‐valley temperature inversions were frequent, particularly in winter and often persisted for several days. Nighttime inversions were more frequent at the cross‐valley scale but displayed the same intra‐annual pattern at the basin and regional scales, becoming most frequent in summer. Nighttime temperature gradients at basin and cross‐valley scales responded similarly to regional‐scale controls, particularly free‐air temperature gradients, despite differences in topography and forest cover. In contrast, the intra‐annual pattern of daytime inversions differed between the basin and cross‐valley scales and between the two cross‐valley transects, implying that topographic and canopy effects on insolation and local winds were key controls at these scales. 
    more » « less
  3. Abstract Popular evapotranspiration (ET) partitioning methods make assumptions that might not be well‐suited to dryland ecosystems, such as high sensitivity of plant water‐use efficiency (WUE) to vapor pressure deficit (VPD). Our objectives were to (a) create an ET partitioning model that can produce fine‐scale estimates of transpiration (T) in drylands, and (b) use this approach to evaluate how climate controls T and WUE across ecosystem types and timescales along a dryland aridity gradient. We developed a novel, semi‐mechanistic ET partitioning method using a Bayesian approach that constrains abiotic evaporation using process‐based models, and loosely constrains time‐varying WUE within an autoregressive framework. We used this method to estimate daily T and weekly WUE across seven dryland ecosystem types and found that T dominates ET across the aridity gradient. Then, we applied cross‐wavelet coherence analysis to evaluate the temporal coherence between focal response variables (WUE and T/ET) and environmental variables. At yearly scales, we found that WUE at less arid, higher elevation sites was primarily limited by atmospheric moisture demand, and WUE at more arid, lower elevation sites was primarily limited by moisture supply. At sub‐yearly timescales, WUE and VPD were sporadically correlated. Hence, ecosystem‐scale dryland WUE is not always sensitive to changes in VPD at short timescales, despite this being a common assumption in many ET partitioning models. This new ET partitioning method can be used in dryland ecosystems to better understand how climate influences physically and biologically driven water fluxes. 
    more » « less
  4. Compound drought‐heatwave (CDHW) events threaten ecosystem productivity and are often characterized by low soil moisture (SM) and high vapor pressure deficit (VPD). However, the relative roles of SM and VPD in constraining forest productivity during CDHWs remain controversial. In the summer of 2022, China experienced a record‐breaking CDHW event (DH2022). Here, we applied satellite remote‐sensing data and meteorological data, and machine‐learning techniques to quantify the individual contributions of SM and VPD to forest productivity variations and investigate their interactions during the development of DH2022. The results reveal that SM, rather than VPD, dominates the forest productivity decline during DH2022. We identified a possible critical tipping point of SM below which forest productivity would quickly decline with the decreasing SM. Furthermore, we illuminated the evolution of SM, VPD, evapotranspiration, forest productivity, and their interactions throughout DH2022. Our findings broaden the understanding of forest response to extreme CDHWs at the ecosystem scale. 
    more » « less
  5. Abstract Recent record-breaking wildfire seasons in California prompt an investigation into the climate patterns that typically precede anomalous summer burned forest area. Using burned-area data from the U.S. Forest Service’s Monitoring Trends in Burn Severity (MTBS) product and climate data from the fifth major global reanalysis produced by the European Centre for Medium-Range Weather Forecasts (ERA5) over 1984–2018, relationships between the interannual variability of antecedent climate anomalies and July California burned area are spatially and temporally characterized. Lag correlations show that antecedent high vapor pressure deficit (VPD), high temperatures, frequent extreme high temperature days, low precipitation, high subsidence, high geopotential height, low soil moisture, and low snowpack and snowmelt anomalies all correlate significantly with July California burned area as far back as the January before the fire season. Seasonal regression maps indicate that a global midlatitude atmospheric wave train in late winter is associated with anomalous July California burned area. July 2018, a year with especially high burned area, was to some extent consistent with the general patterns revealed by the regressions: low winter precipitation and high spring VPD preceded the extreme burned area. However, geopotential height anomaly patterns were distinct from those in the regressions. Extreme July heat likely contributed to the extent of the fires ignited that month, even though extreme July temperatures do not historically significantly correlate with July burned area. While the 2018 antecedent climate conditions were typical of a high-burned-area year, they were not extreme, demonstrating the likely limits of statistical prediction of extreme fire seasons and the need for individual case studies of extreme years. Significance Statement The purpose of this study is to identify the local and global climate patterns in the preceding seasons that influence how the burned summer forest area in California varies year-to-year. We find that a dry atmosphere, high temperatures, dry soils, less snowpack, low precipitation, subsiding air, and high pressure centered west of California all correlate significantly with large summer burned area as far back as the preceding January. These climate anomalies occur as part of a hemispheric scale pattern with weak connections to the tropical Pacific Ocean. We also describe the climate anomalies preceding the extreme and record-breaking burned-area year of 2018, and how these compared with the more general patterns found. These results give important insight into how well and how early it might be possible to predict the severity of an upcoming summer wildfire season in California. 
    more » « less