skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Numerical investigation of turbulent flow over a randomly packed sediment bed using a variable porosity continuum model
A large eddy simulation (LES) is performed for a turbulent open channel flow over a porous sediment bed at permeability Reynolds number of ReK∼2.56 (Reτ = 270) representative of aquatic systems. A continuum approach based on the upscaled, volume-averaged Navier−Stokes (VaNS) equations is used by defining smoothly varying porosity across the sediment water interface (SWI) and modeling the drag force in the porous bed using a modified Ergun equation with Forchheimer corrections for inertial terms. The results from the continuum approach are compared with a pore-resolved direct numerical simulation (PR-DNS) in which turbulent flow over a randomly packed sediment bed of monodispersed particles is investigated [Karra et al.,J. Fluid Mech. 971, A23 (2023)] A spatially varying porosity profile generated from the pore-resolved DNS is used in the continuum approach. Mean flow, Reynolds stress statistics, and net momentum exchange between the freestream and the porous bed are compared between the two studies, showing reasonably good agreement. Small deviations within the transitional region between the sediment bed and the freestream as compared to the PR-DNS results are attributed to the local protrusions of particles in a randomly packed bed that are absent in the continuum approach but are present in the PR-DNS. A better representation of the effective permeability in the top transition layer that accounts for roughness effect of exposed particles is necessary. The continuum approach significantly reduces the computational cost, thereby making it suitable to study hyporheic exchange of mass and momentum in large scale aquatic domains with combined influence of bedform and bed roughness.  more » « less
Award ID(s):
2053248
PAR ID:
10594207
Author(s) / Creator(s):
;
Publisher / Repository:
AIP Publishing
Date Published:
Journal Name:
Physics of Fluids
Volume:
36
Issue:
11
ISSN:
1070-6631
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Pore-resolved direct numerical simulations (DNS) are used to investigate the interactions between stream-water flow turbulence and groundwater flow through a porous sediment bed in the hyporheic zone. Two permeability Reynolds numbers (2.56 and 5.17), representative of aquatic systems and representing ratio of permeability to viscous length scales, were simulated to understand its influence on the momentum exchange at the sediment-water interface (SWI). A doubleaveraging methodology is used to compute the Reynolds stresses, form-induced stresses, and pressure fluctuations. It is observed that both shear layer and turbulent shear stress penetration increases with ReK. Reynolds and form-induced bed-normal stresses increase with ReK. The peak values of the form-induced stresses for the lower (2.56) and higher (5.17) ReK happen within the top layer of the sediment bed. The sum of turbulent and form-induced pressure fluctuations, analyzed at their respective zero-displacement planes, are statistically similar and can be well approximated by a t location-scale distribution fit providing with a model that could potentially be used to impose boundary conditions at the SWI in reach scale simulations. 
    more » « less
  2. Pore-resolved direct numerical simulations are performed to investigate the interactions between streamflow turbulence and groundwater flow through a randomly packed porous sediment bed for three permeability Reynolds numbers,$$Re_K=2.56$$, 5.17 and 8.94, representative of natural stream or river systems. Time–space averaging is used to quantify the Reynolds stress, form-induced stress, mean flow and shear penetration depths, and mixing length at the sediment–water interface (SWI). The mean flow and shear penetration depths increase with$$Re_K$$and are found to be nonlinear functions of non-dimensional permeability. The peaks and significant values of the Reynolds stresses, form-induced stresses, and pressure variations are shown to occur in the top layer of the bed, which is also confirmed by conducting simulations of just the top layer as roughness elements over an impermeable wall. The probability distribution functions (p.d.f.s) of normalized local bed stress are found to collapse for all Reynolds numbers, and their root-mean-square fluctuations are assumed to follow logarithmic correlations. The fluctuations in local bed stress and resultant drag and lift forces on sediment grains are mainly a result of the top layer; their p.d.f.s are symmetric with heavy tails, and can be well represented by a non-Gaussian model fit. The bed stress statistics and the pressure data at the SWI potentially can be used in providing better boundary conditions in modelling of incipient motion and reach-scale transport in the hyporheic zone. 
    more » « less
  3. Our recently published papers reporting results of Direct Numerical Simulation (DNS) of forced convection flows in porous media suggest that in a porous medium the size of turbulent structures is restricted by the pore scale. Since the turbulent kinetic energy is predominantly contained within large eddies, this suggests that turbulent flow in a porous medium may carry less energy that its counterpart in a clear fluid domain. We use this insight to develop a practical model of turbulent flow in composite porous/fluid domains. In such domains, most of the flow is expected to occur in the clear fluid region; therefore, in most cases the flow in the porous region either remains laminar or starts its transition to turbulence even if the flow in the clear fluid region is fully turbulent. This conclusion is confirmed by comparing appropriate Reynolds numbers with their critical values. Therefore, for most cases, using the Forchheimer term in the momentum equation and the thermal dispersion term in the energy equation may result in a sufficiently good model for the porous region. However, what may really affect turbulent convection in composite domains is the roughness of the porous/fluid interface. If particles or fibers that constitute the porous medium (and the pores) are relatively large, the impact of the roughness on convection heat transfer in composite porous/fluid domains may be much more significant than the impact of possible turbulence in the porous region. We use the above considerations to develop a practical model of turbulent flow in a composite porous/fluid domain, concentrating on the effect of interface roughness on turbulence. 
    more » « less
  4. Direct Numerical Simulation (DNS) of compressible spatially-developing turbulent boundary layers (SDTBL) is performed at a Mach number of 2.5 and low/high Reynolds numbers over isothermal Zero-Pressure Gradient (ZPG) flat plates. Turbulent inflow information is generated via a dynamic rescaling-recycling approach (J. Fluid Mech., 670, pp. 581-605, 2011), which avoids the use of empirical correlations in the computation of inlet turbulent scales. The range of the low Reynolds number case is approximately 400-800, based on the momentum thickness, freestream velocity and wall viscosity. DNS at higher Reynolds numbers (~3,000, about four-fold larger) is also carried out with the purpose of analyzing the effect of Reynolds number on the transport phenomena in the supersonic regime. Additionally, low/high order flow statistics are compared with DNS of an incompressible isothermal ZPG boundary layer at similar low Reynolds numbers and the temperature regarded as a passive scalar. Peaks of turbulence intensities move closer to the wall as the Reynolds number increases in the supersonic flat plate. Furthermore, Reynolds shear stresses depict a much larger "plateau" (constant shear layer) at the highest Reynolds number considered in present study. 
    more » « less
  5. The role of solid obstacle surface roughness in turbulent convection in porous media is not well understood, even though it is frequently used for heat transfer enhancement in many applications. The focus of this paper is to systematically study the influence of solid obstacle surface roughness in porous media on the microscale flow physics and report its effect on macroscale drag and Nusselt number. The Reynolds-averaged flow field is numerically simulated using the realizable k-ε model for a flow through a periodic porous medium consisting of an in-line arrangement of square cylinders with square roughness particles on the cylinder surface. Two flow regimes are identified with respect to the surface roughness particle height—fine and coarse roughness regimes. The effect of the roughness particles in the fine roughness regime is limited to the near-wall boundary layer around the solid obstacle surface. In the coarse roughness regime, the roughness particles modify the microscale flow field in the entire pore space of the porous medium. In the fine roughness regime, the heat transfer from the rough solid obstacles to the fluid inside the porous medium is less than that from a smooth solid obstacle. In the coarse roughness regime, there is an enhancement in the heat transfer from the rough solid obstacle to the fluid inside the porous medium. Total drag reduction is also observed in the fine roughness regime for the smallest roughness particle height. The surface roughness particle spacing determines the fractional area of the solid obstacle surface covered by recirculating, reattached, and stagnating flow. As the roughness particle spacing increases, there are two competing factors for the heat transfer rate—increase due to more surface area covered by reattached flow and decrease due to fewer roughness particles on the solid obstacle surface. Decreasing the porosity and increasing the Reynolds number amplify the effect of the surface roughness on the microscale flow. The results suggest that heat transfer in porous media can be enhanced, if the increase in drag can be overcome. The results also show that the fine roughness regime, which is frequently encountered due to corrosion, is detrimental to the heat transfer performance of porous media. 
    more » « less