skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High temperature, experimental thermal memory based on optical resonances in photonic crystal slabs
We present an experimental thermal memory with direct optical control and readout. Information is stored in the internal temperature of the device, while laser illumination is used to read, write, and erase stored bits. Our design is based on an absorptive optical resonance in a silicon photonic crystal slab. When the slab is illuminated by a laser with a wavelength close to the resonance, the optical absorption is nonlinear with power, resulting in thermo-optic bistability. We experimentally demonstrate bistability in a fabricated device and show the reading, writing, and erasing of a single memory bit. A hybrid optothermal model shows good agreement with the experiment. Time dependent measurements show that the experimental write/erase times are less than 500 µs. We demonstrate that memory reliability is maintained over 106 cycles, with less than 3% change in the transmission values for the memory ON and OFF states. Our approach allows operation in high temperature and/or highly fluctuating temperature environment up to 100 °C or greater.  more » « less
Award ID(s):
1711268
PAR ID:
10594211
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
APL Photonics
Volume:
4
Issue:
1
ISSN:
2378-0967
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The high transmission speed of optical signals and their application in optical computation have created a growing demand for photon‐programmed memory devices. Rather than using electrical pulses to store data in one of two states, the photomemory (PM) devices exploit the optical stimulation to store the light information. In this work, the application of a nonvolatile rewritable PM array using the photochromic inorganic perovskite CsPbIBr2grown by a vapor‐deposition process is demonstrated. Reversible phase transitions between orthorhombic (δ) and cubic (α) phases are achieved in CsPbIBr2films through laser‐induced heat and moisture exposure. The PM pixels in an optically absorbing perovskite phase exhibit ≈50‐fold photoresponsivity as large as those in a transparent‐colored non‐perovskite phase. Storing optical data are achieved by heating pixels through a near‐infrared laser, while moisture exposure is used to erase the stored information. The nonvolatile PM array exhibits great write‐read‐erase cycle endurance and data retention capability without obvious performance degradation after storage in air for one week. This work demonstrates the promising application of vapor‐deposited inorganic perovskite for optical information storage and the unique potential of them for use in optical switches, tunable metasurfaces, and many other applications. 
    more » « less
  2. We demonstrate a low power thermally induced optical bistability at telecom wavelengths and room temperature using a nanobeam photonic crystal cavity embedded with an ensemble of quantum dots. The nanobeam photonic crystal cavity is transfer-printed onto the edge of a carrier chip for thermal isolation of the cavity with an efficient optical coupling between the nanobeam waveguide and optical setup. Reflectivity measurements performed with a tunable laser reveal the thermo-optic nature of the nonlinearity. A bistability power threshold as low as 23 μW and an on/off response contrast of 6.02 dB are achieved from a cavity with a moderately low quality factor of 2830. Our device provides optical bistability at power levels an order of magnitude lower than previous quantum-dot-based devices. 
    more » « less
  3. Flash and non-volatile memory (NVM) devices have only a limited number of write-erase cycles. Consequently, when employed as caches, cache management policies may choose not to cache certain requested items in order to extend device lifespan. In this work, we propose a simple single-parameter utility function to model the trade-off between maximizing hit-rate and minimizing write-erase cycles for such caches, and study the problem of developing an off-line strategy for deciding whether to write a new item to cache, and if so which item already in the cache to replace. Our main result is, , an efficient, network flow based algorithm which finds optimal cache management policy under this new setting. 
    more » « less
  4. Modern integrated circuits (ICs) possess several countermeasures to safeguard sensitive data and information stored in the device. In recent years, semi-invasive physical attacks based on optical debugging techniques have proven to be capable of easily bypassing these security measures implemented in the chip. Optical attacks can reveal the data stored in memory, cache and register through various methods such as photon emission analysis, laser fault injection, laser voltage probing, and thermal laser stimulation. The above-mentioned methods, which employ laser scanning microscopy and photon emission microscopy, are effective because the silicon substrate is transparent to near-infrared (NIR) photons. Therefore, the most vulnerable part of an IC to optical attacks is the backside, where the chip's transistors can be accessed and probed with a NIR laser beam. Although different optical attack detection and … 
    more » « less
  5. Phase Change Memory (PCM) is an attractive candidate for main memory, as it offers non-volatility and zero leakage power while providing higher cell densities, longer data retention time, and higher capacity scaling compared to DRAM. In PCM, data is stored in the crystalline or amorphous state of the phase change material. The typical electrically controlled PCM (EPCM), however, suffers from longer write latency and higher write energy compared to DRAM and limited multi-level cell (MLC) capacities. These challenges limit the performance of data-intensive applications running on computing systems with EPCMs. Recently, researchers demonstrated optically controlled PCM (OPCM) cells with support for 5bits/cellin contrast to 2bits/cellin EPCM. These OPCM cells can be accessed directly with optical signals that are multiplexed in high-bandwidth-density silicon-photonic links. The higher MLC capacity in OPCM and the direct cell access using optical signals enable an increased read/write throughput and lower energy per access than EPCM. However, due to the direct cell access using optical signals, OPCM systems cannot be designed using conventional memory architecture. We need a complete redesign of the memory architecture that is tailored to the properties of OPCM technology. This article presents the design of a unified network and main memory system called COSMOS that combines OPCM and silicon-photonic links to achieve high memory throughput. COSMOS is composed of a hierarchical multi-banked OPCM array with novel read and write access protocols. COSMOS uses an Electrical-Optical-Electrical (E-O-E) control unit to map standard DRAM read/write commands (sent in electrical domain) from the memory controller on to optical signals that access the OPCM cells. Our evaluation of a 2.5D-integrated system containing a processor and COSMOS demonstrates2.14 ×average speedup across graph and HPC workloads compared to an EPCM system. COSMOS consumes3.8×lower read energy-per-bit and5.97×lower write energy-per-bit compared to EPCM. COSMOS is the first non-volatile memory that provides comparable performance and energy consumption as DDR5 in addition to increased bit density, higher area efficiency, and improved scalability. 
    more » « less