Experimental limitations such as optical loss and noise have prevented entanglement-enhanced measurements from demonstrating a significant quantum advantage in sensitivity. Holland-Burnett entangled states can mitigate these limitations and still present a quantum advantage in sensitivity. Here we model a fiber-based Mach-Zehnder interferometer with internal loss, detector efficiency, and external phase noise and without pure entanglement. This model features a practical fiber source that transforms the two-mode squeezed vacuum (TMSV) into Holland-Burnett entangled states. We predict that a phase sensitivity 28% beyond the shot noise limit is feasible with current technology. Simultaneously, a TMSV source can provide about 25 times more photon flux than other entangled sources. This system will make fiber-based quantum-enhanced sensing accessible and practical for remote sensing and probing photosensitive materials.
more »
« less
Quantum SU(1,1) interferometers: Basic principles and applications
A new type of quantum interferometer was recently realized that employs parametric amplifiers (PAs) as the wave splitting and mixing elements. The quantum behavior stems from the PAs, which produce quantum entangled fields for probing the phase change signal in the interferometer. This type of quantum entangled interferometer exhibits some unique properties that are different from traditional beam splitter-based interferometers such as Mach–Zehnder interferometers. Because of these properties, it is superior to the traditional interferometers in many aspects, especially in the phase measurement sensitivity. We will review its unique properties and applications in quantum metrology and sensing, quantum information, and quantum state engineering.
more »
« less
- Award ID(s):
- 1806425
- PAR ID:
- 10594213
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- APL Photonics
- Volume:
- 5
- Issue:
- 8
- ISSN:
- 2378-0967
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Complex network theory has focused on properties of networks with real-valued edge weights. However, in signal transfer networks, such as those representing the transfer of light across an interferometer, complex-valued edge weights are needed to represent the manipulation of the signal in both magnitude and phase. These complex-valued edge weights introduce interference into the signal transfer, but it is unknown how such interference affects network properties such as small-worldness. To address this gap, we have introduced a small-world interferometer network model with complex-valued edge weights and generalized existing network measures to define the interferometric clustering coefficient, the apparent path length, and the interferometric small-world coefficient. Using high-performance computing resources, we generated a large set of small-world interferometers over a wide range of parameters in system size, nearest-neighbor count, and edge-weight phase and computed their interferometric network measures. We found that the interferometric small-world coefficient depends significantly on the amount of phase on complex-valued edge weights: for small edge- weight phases, constructive interference led to a higher interferometric small-world coefficient; while larger edge-weight phases induced destructive interference which led to a lower interferometric small-world coefficient. Thus, for the small-world interferometer model, interferometric measures are necessary to capture the effect of interference on signal transfer. This model is an example of the type of problem that necessitates interferometric measures, and applies to any wave-based network including quantum networks.more » « less
-
Complex network theory has focused on properties of networks with real-valued edge weights. However, in signal transfer networks, such as those representing the transfer of light across an interferometer, complex-valued edge weights are needed to represent the manipulation of the signal in both magnitude and phase. These complex-valued edge weights introduce interference into the signal transfer, but it is unknown how such interference affects network properties such as small-worldness. To address this gap, we have introduced a small-world interferometer network model with complex-valued edge weights and generalized existing network measures to define the interferometric clustering coefficient, the apparent path length, and the interferometric small-world coefficient. Using high-performance computing resources, we generated a large set of small-world interferometers over a wide range of parameters in system size, nearest-neighbor count, and edge-weight phase and computed their interferometric network measures. We found that the interferometric small-world coefficient depends significantly on the amount of phase on complex-valued edge weights: for small edge-weight phases, constructive interference led to a higher interferometric small-world coefficient; while larger edge-weight phases induced destructive interference which led to a lower interferometric small-world coefficient. Thus, for the small-world interferometer model, interferometric measures are necessary to capture the effect of interference on signal transfer. This model is an example of the type of problem that necessitates interferometric measures, and applies to any wave-based network including quantum networks.more » « less
-
Two kinds of multidimensional atom interferometers are demonstrated that are capable of measuring both the magnitude and direction of applied inertial forces. These interferometers, built from ultracold Bose-Einstein condensed rubidium atoms, use an original design that operates entirely within the Bloch bands of an optical lattice. Through time-dependent lattice position control, we realize Bloch oscillations in two dimensions and a vector atomic Michelson interferometer. Fits to the observed Bloch oscillations demonstrate the measurement of an applied acceleration of 2galong two axes, wheregis Earth’s gravitational acceleration. For the Michelson interferometer, we perform Bayesian inferencing from a 49-channel output by repeating experiments for two-axis accelerations and demonstrate vector parameter estimation. Accelerations can be measured from single experimental runs and do not require repeated shots to construct a fringe. The performance of our device is near the quantum limit for the interferometer size and quantum detection efficiency of the atoms.more » « less
-
Abstract We experimentally demonstrate a new type of spin-mixing interferometry in sodium Bose–Einstein condensates (BECs) based on seeded initial states. Seeding is useful because it speeds up the generation of entangled pairs, allowing many collisions to take place quickly, creating large populations in the arms of the interferometer. The entangled probe states of our interferometer are generated via spin-exchange collisions in F = 1 spinor BECs, where pairs of atoms with the magnetic quantum number m F = 0 collide and change into pairs with m F = ± 1 . Our results show that our seeded spin-mixing interferometer beats the standard quantum limit (SQL) with a metrological gain of 3.69 dB with spin-mixing time t = 10 ms in the case of single-sided seeding, and 3.33 dB with spin-mixing time t = 8 ms in the case of double sided seeding. The mechanism for beating the SQL is two-mode spin squeezing generated via spin-exchange collisions. Our results on spin-mixing interferometry with seeded states are useful for future quantum technologies such as quantum-enhanced microwave sensors, and quantum parametric amplifiers based on spin-mixing.more » « less
An official website of the United States government
