skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Realistic model of entanglement-enhanced sensing in optical fibers
Experimental limitations such as optical loss and noise have prevented entanglement-enhanced measurements from demonstrating a significant quantum advantage in sensitivity. Holland-Burnett entangled states can mitigate these limitations and still present a quantum advantage in sensitivity. Here we model a fiber-based Mach-Zehnder interferometer with internal loss, detector efficiency, and external phase noise and without pure entanglement. This model features a practical fiber source that transforms the two-mode squeezed vacuum (TMSV) into Holland-Burnett entangled states. We predict that a phase sensitivity 28% beyond the shot noise limit is feasible with current technology. Simultaneously, a TMSV source can provide about 25 times more photon flux than other entangled sources. This system will make fiber-based quantum-enhanced sensing accessible and practical for remote sensing and probing photosensitive materials.  more » « less
Award ID(s):
1838435
PAR ID:
10531142
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Express
Volume:
30
Issue:
6
ISSN:
1094-4087; OPEXFF
Format(s):
Medium: X Size: Article No. 8652
Size(s):
Article No. 8652
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract We solve the entanglement-assisted (EA) classical capacity region of quantum multiple-access channels (MACs) with an arbitrary number of senders. As an example, we consider the bosonic thermal-loss MAC and solve the one-shot capacity region enabled by an entanglement source composed of sender-receiver pairwise two-mode squeezed vacuum states. The EA capacity region is strictly larger than the capacity region without entanglement-assistance. With two-mode squeezed vacuum states as the source and phase modulation as the encoding, we also design practical receiver protocols to realize the entanglement advantages. Four practical receiver designs, based on optical parametric amplifiers, are given and analyzed. In the parameter region of a large noise background, the receivers can enable a simultaneous rate advantage of 82.0% for each sender. Due to teleportation and superdense coding, our results for EA classical communication can be directly extended to EA quantum communication at half of the rates. Our work provides a unique and practical network communication scenario where entanglement can be beneficial. 
    more » « less
  2. Fiber-based interferometry with entangled photons can provide sub-shot-noise resolution, which is ideal for photon-starved applications. Simulations demonstrate that measurements with realistic losses and other imperfections show quantum-enhanced phase resolution for practical applications. 
    more » « less
  3. Interactions among sensors can provide, in addition to entanglement, an important resource for boosting the precision in quantum estimation protocols. Dephasing noise, however, remains a leading source of decoherence in state-of-the-art quantum sensing platforms. We analyze the impact of classical collective dephasing with arbitrary temporal correlations on the performance of generalized Ramsey interferometry protocols with quadratic encoding of a target frequency parameter. The optimal asymptotic precision bounds are derived for both product coherent spin states and a class of experimentally relevant entangled spin-squeezed states of N qubit sensors. While, as in linear metrology, entanglement offers no advantage if the noise is Markovian, a precision scaling of N−1 is reachable with classical input states in the quadratic setting, which is improved to N−5/4 when temporal correlations are present and the Zeno regime is accessible. The use of nonclassical spin-squeezed states and a nonlinear readout further allows for an N−3/2 precision scaling, which we prove is asymptotically optimal. We also show how to counter noise-induced bias by introducing a simple ratio estimator, which relies on detecting two suitable system observables, and we show that it remains asymptotically unbiased in the presence of dephasing, without detriment to the achievable precision. 
    more » « less
  4. Optomechanical systems have been exploited in ultrasensitive measurements of force, acceleration and magnetic fields. The fundamental limits for optomechanical sensing have been extensively studied and now well understood—the intrinsic uncertainties of the bosonic optical and mechanical modes, together with backaction noise arising from interactions between the two, dictate the standard quantum limit. Advanced techniques based on non-classical probes, in situ ponderomotive squeezed light and backaction-evading measurements have been developed to overcome the standard quantum limit for individual optomechanical sensors. An alternative, conceptually simpler approach to enhance optomechanical sensing rests on joint measurements taken by multiple sensors. In this configuration, a pathway to overcome the fundamental limits in joint measurements has not been explored. Here we demonstrate that joint force measurements taken with entangled probes on multiple optomechanical sensors can improve the bandwidth in the thermal-noise-dominant regime or the sensitivity in the shot-noise-dominant regime. Moreover, we quantify the overall performance of entangled probes with the sensitivity–bandwidth product and observe a 25% increase compared with that of classical probes. The demonstrated entanglement-enhanced optomechanical sensors would enable new capabilities for inertial navigation, acoustic imaging and searches for new physics. 
    more » « less
  5. Abstract Dual-comb interferometry harnesses the interference of two laser frequency combs to provide unprecedented capability in spectroscopy applications. In the past decade, the state-of-the-art systems have reached a point where the signal-to-noise ratio per unit acquisition time is fundamentally limited by shot noise from vacuum fluctuations. To address the issue, we propose an entanglement-enhanced dual-comb spectroscopy protocol that leverages quantum resources to significantly improve the signal-to-noise ratio performance. To analyze the performance of real systems, we develop a quantum model of dual-comb spectroscopy that takes practical noises into consideration. Based on this model, we propose quantum combs with side-band entanglement around each comb lines to suppress the shot noise in heterodyne detection. Our results show significant quantum advantages in the uW to mW power range, making this technique particularly attractive for biological and chemical sensing applications. Furthermore, the quantum comb can be engineered using nonlinear optics and promises near-term experimentation. 
    more » « less