ABSTRACT Parasites have a rich and long natural history among biological entities, and it has been suggested that parasites are one of the most significant factors in the evolution of their hosts. However, it has been emphasized less frequently how co‐evolution has undoubtedly also shaped the paths of parasites. It may seem safe to assume that specific differences among the array of potential hosts for particular parasites have restricted and diversified their evolutionary pathways and strategies for survival. Nevertheless, if one looks closely enough at host and parasite, one finds commonalities, both in terms of host defences and parasite strategies to out‐manoeuvre them. While such analyses have been the source of numerous reviews, they are generally limited to interactions between, at most, one kingdom of parasite with two kingdoms of host (e.g. similarities in animal and plant host responses against fungi). With the aim of extending this view, we herein critically evaluate the similarities and differences across all four eukaryotic host kingdoms (plants, animals, fungi, and protists) and their parasites. In doing so, we show that hosts tend to share common strategies for defence, including both physical and behavioural barriers, and highly evolved immune responses, in particular innate immunity. Parasites have, similarly, evolved convergent strategies to counter these defences, including mechanisms of active penetration, and evading the host's innate and/or adaptive immune responses. Moreover, just as hosts have evolved behaviours to avoid parasites, many parasites have adaptations to manipulate host phenotype, physiologically, reproductively, and in terms of behaviour. Many of these strategies overlap in the host and parasite, even across wide phylogenetic expanses. That said, specific differences in host physiology and immune responses often necessitate different adaptations for parasites exploiting fundamentally different hosts. Taken together, this review facilitates hypothesis‐driven investigations of parasite–host interactions that transcend the traditional kingdom‐based research fields.
more »
« less
Ontogeny of immunity and potential implications for co-infection
Immunity changes through ontogeny and can mediate facilitative and inhibitory interactions among co-infecting parasite species. In amphibians, most immune memory is not carried through metamorphosis, leading to variation in the complexity of immune responses across life stages. To test if the ontogeny of host immunity might drive interactions among co-infecting parasites, we simultaneously exposed Cuban treefrogs ( Osteopilus septentrionalis ) to a fungus ( Batrachochytrium dendrobaditis , Bd) and a nematode ( Aplectana hamatospicula ) at tadpole, metamorphic and post-metamorphic life stages. We measured metrics of host immunity, host health and parasite abundance. We predicted facilitative interactions between co-infecting parasites as the different immune responses hosts mount to combat these infectious are energetically challenging to mount simultaneously. We found ontogenetic differences in IgY levels and cellular immunity but no evidence that metamorphic frogs were more immunosuppressed than tadpoles. There was also little evidence that these parasites facilitated one another and no evidence that A. hamatospicula infection altered host immunity or health. However, Bd, which is known to be immunosuppressive, decreased immunity in metamorphic frogs. This made metamorphic frogs both less resistant and less tolerant of Bd infection than the other life stages. These findings indicate that changes in immunity altered host responses to parasite exposures throughout ontogeny. This article is part of the theme issue ‘Amphibian immunity: stress, disease and ecoimmunology’.
more »
« less
- PAR ID:
- 10453013
- Date Published:
- Journal Name:
- Philosophical Transactions of the Royal Society B: Biological Sciences
- Volume:
- 378
- Issue:
- 1882
- ISSN:
- 0962-8436
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Why parasites occur in certain hosts in certain locations has been a long-standing question among ecological and evolutionary parasitologists. Encounter and compatibility filters summarize the likelihood that a host and parasite will physically interact and establish an infection upon contact. Encounter and compatibility filters are not fixed and, among multiple locations, the abiotic environmental characteristics and biotic community composition that contribute to the filters often vary spatially and temporally. Abiotic variation may directly affect hosts or parasites —particularly parasites with one or more free-living stages— whereas the local biotic community may dilute or amplify parasite transmission. Unlike directly transmitted parasites, complex-life cycle parasites use multiple hosts, thus having life cycles that, we hypothesize, are highly susceptible to the effects of spatiotemporal environmental variation. We modeled infection probability relationships of endohelminths from post-metamorphic wood frogs (Rana [Lithobates] sylvatica) and northern leopard frogs (Rana pipiens) with wetland characteristics, landscape composition, and the anuran species within the local community. Parasites included complex-life cycle trematodes that use amphibians as definitive hosts (Haematoloechus spp., Glypthelmins quieta) or as intermediate hosts (Alaria sp., Neodiplostomum sp., echinostomatids, Lechriorchis) and nematodes with direct or indirect life cycles (Cosmocercoides, Oswaldocruzia). Although our results demonstrate that distributions of parasites with complex and direct life cycles are correlated with some abiotic and biotic characteristics of the environment, there were few general trends. Each parasite's distribution had its own unique relationship with wetland, landscape, and amphibian-community variables and there was overall low predictability for most species. One landscape feature — the number of wetlands within the vicinity of the site of amphibian capture — was commonly included in top models for leopard frogs and could be associated with how definitive hosts (e.g., amphibians, mammals, birds) and intermediate hosts (e.g., snails, odonates) use the landscape. The amphibian community at any given site also commonly affected infection probabilities, such that the local presence of other species tended to reduce infection probabilities in sampled frogs, lending support to the dilution effect at the landscape level. Our research highlights the need to consider spatiotemporal sampling, environmental variation, and host-community variation when studying parasite prevalence in any given component community.more » « less
-
Abstract Why do parasites exhibit a wide dynamical range within their hosts? For instance, why does infecting dose either lead to infection or immune clearance? Why do some parasites exhibit boom‐bust, oscillatory dynamics? What maintains parasite diversity, that is coinfectionvsingle infection due to exclusion or priority effects? For insights on parasite dose, dynamics and diversity governing within‐host infection, we turn to niche models. An omnivory food web model (IGP) blueprints one parasite competing with immune cells for host energy (PIE). Similarly, a competition model (keystone predation, KP) mirrors a new coinfection model (2PIE). We then drew analogies between models using feedback loops. The following three points arise: first, like in IGP, parasites oscillate when longer loops through parasites, immune cells and resource regulate parasite growth. Shorter, self‐limitation loops (involving resources and enemies) stabilise those oscillations. Second, IGP can produce priority effects that resemble immune clearance. But, despite comparable loop structure, PIE cannot due to constraints imposed by production of immune cells. Third, despite somewhat different loop structure, KP and 2PIE share apparent and resource competition mechanisms that produce coexistence (coinfection) or priority effects of prey or parasites. Together, this mechanistic niche framework for within‐host dynamics offers new perspective to improve individual health.more » « less
-
Environmental temperature fundamentally shapes insect physiology, fitness and interactions with parasites. Differential climate warming effects on host versus parasite biology could exacerbate or inhibit parasite transmission, with far-reaching implications for pollination services, biocontrol and human health. Here, we experimentally test how controlled temperatures influence multiple components of host and parasite fitness in monarch butterflies (Danaus plexippus) and their protozoan parasitesOphryocystis elektroscirrha. Using five constant-temperature treatments spanning 18–34°C, we measured monarch development, survival, size, immune function and parasite infection status and intensity. Monarch size and survival declined sharply at the hottest temperature (34°C), as did infection probability, suggesting that extreme heat decreases both host and parasite performance. The lack of infection at 34°C was not due to greater host immunity or faster host development but could instead reflect the thermal limits of parasite invasion and within-host replication. In the context of ongoing climate change, temperature increases above current thermal maxima could reduce the fitness of both monarchs and their parasites, with lower infection rates potentially balancing negative impacts of extreme heat on future monarch abundance and distribution.more » « less
-
Infection duration affects individual host fitness and between-host transmission. Whether an infection is cleared or becomes chronic depends on the complex interaction between host immune responses and parasite growth. Empirical and theoretical studies have suggested that there are critical thresholds of parasite dose that can determine clearance versus chronicity, driven by the ability of the parasite to manipulate host immunity. However, the mammalian immune response is characterized by strong positive and negative feedback loops that could generate duration thresholds even in the absence of direct immunomodulation. Here, we derive and analyse a simple model for the interaction between T-cell subpopulations and parasite growth. We show that whether an infection is cleared or not is very sensitive to the initial immune state, parasite dose and strength of immunological feedbacks. In particular, chronic infections are possible even when parasites provoke a strong and effective immune response and lack any ability to immunomodulate. Our findings indicate that the initial immune state, which often goes unmeasured in empirical studies, is a critical determinant of infection duration. This work also has implications for epidemiological models, as it implies that infection duration will be highly variable among individuals, and dependent on each individual’s infection history.more » « less
An official website of the United States government

