Abstract Supramolecular polymer networks contain non-covalent cross-links that enable access to broadly tunable mechanical properties and stimuli-responsive behaviors; the incorporation of multiple unique non-covalent cross-links within such materials further expands their mechanical responses and functionality. To date, however, the design of such materials has been accomplished through discrete combinations of distinct interaction types in series, limiting materials design logic. Here we introduce the concept of leveraging “nested” supramolecular crosslinks, wherein two distinct types of non-covalent interactions exist in parallel, to control bulk material functions. To demonstrate this concept, we use polymer-linked Pd2L4metal–organic cage (polyMOC) gels that form hollow metal–organic cage junctions through metal–ligand coordination and can exhibit well-defined host-guest binding within their cavity. In these “nested” supramolecular network junctions, the thermodynamics of host-guest interactions within the junctions affect the metal–ligand interactions that form those junctions, ultimately translating to substantial guest-dependent changes in bulk material properties that could not be achieved in traditional supramolecular networks with multiple interactions in series.
more »
« less
Viscoelastic Supramolecular Networks Based on Guanidinium‐Oxyanion Interactions
We describe the synthesis and characterization of supramolecular networks based on charge‐assisted hydrogen bonding interactions of guanidinium and oxyanion functionalities. Although they are constructed entirely of small‐molecule components, these materials display properties such as a glass transition and time‐ and temperature‐dependent viscoelastic rheological behavior. These properties can be tuned by the choice of each network component:Tgvaries by over 50°C in the studied networks, and relaxation times scaled with changes toTg. However, these supramolecular materials are inherently degradable and thermally reversible as no covalent macromolecular structure is formed
more »
« less
- Award ID(s):
- 2105149
- PAR ID:
- 10594299
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Journal of Polymer Science
- ISSN:
- 2642-4150
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Debenedetti, P (Ed.)Using angle-resolved X-ray photoelectron spectroscopy, sum-frequency generation vibrational spectroscopy, contact angle measurements, and molecular dynamics simulations, we verify that the glass transition temperature (Tg) of polymer glass is lower near the free surface. However, the experimentalTg-gradients showed a linear variation with depth (z) from the free surface, while the simulated equilibriumTg-gradients exhibited a double exponentialz-dependence. In typical simulations,Tgis determined based on the relaxation time of the system reaching a prescribed threshold value at equilibrium. Conversely, the experiments determinedTgby observing the unfreezing of molecular mobility during heating from a kinetically arrested, nonequilibrium glassy state. To investigate the impact of nonequilibrium effects on theTg-gradient, we reduced the thermal annealing time in simulations, allowing the system to fall out of equilibrium. We observe a decrease in the relaxation time and the emergence of a modifiedz-dependence consistent with a linearTg-gradient near the free surface. We further validate the impact of nonequilibrium effects by studying the dependence of theTgon the heating/cooling rate for polymer films of varying thickness (h). Our experimental results reveal significant variations in theTg-heating/cooling rate dependence withhbelow the bulkTg, which are also observed in simulation when the simulated system is not equilibrated. We explain our findings by the reduction in mass density within the inner region of the system under nonequilibrium conditions, as observed in simulation, and recent research indicating a decrease in the localTgof a polymer when placed next to a softer material.more » « less
-
Abstract Motivated by the recent observation of superconductivity withTc ~ 80 K in pressurized La3Ni2O71, we explore the structural and electronic properties ofA3Ni2O7bilayer nickelates (A = La-Lu, Y, Sc) as a function of pressure (0–150 GPa) from first principles including a Coulomb repulsion term. At ~ 20 GPa, we observe an orthorhombic-to-tetragonal transition in La3Ni2O7at variance with x-ray diffraction data, which points to so-far unresolved complexities at the onset of superconductivity, e.g., charge doping by variations in the oxygen stoichiometry. We compile a structural phase diagram that establishes chemical and external pressure as distinct and counteracting control parameters. We find unexpected correlations betweenTcand thein-planeNi-O-Ni bond angles for La3Ni2O7. Moreover, two structural phases with significantc+octahedral rotations and in-plane bond disproportionations are uncovered forA = Nd-Lu, Y, Sc that exhibit a pressure-driven electronic reconstruction in the Niegmanifold. By disentangling the involvement of basal versus apical oxygen states at the Fermi surface, we identify Tb3Ni2O7as an interesting candidate for superconductivity at ambient pressure. These results suggest a profound tunability of the structural and electronic phases in this novel materials class and are key for a fundamental understanding of the superconductivity mechanism.more » « less
-
Abstract The preparation of 0.58 Li2S + 0.315 SiS2+ 0.105 LiPO3glass, and the impacts of polysulfide and P1Pdefect structure impurities on the glass transition temperature (Tg), crystallization temperature (Tc), working range (ΔT≡ Tc‐ Tg), fragility index, and the Raman spectra were evaluated using statistical analysis. In this study, 33 samples of this glass composition were synthesized through melt‐quenching. Thermal analysis was conducted to determine the glass transition temperature, crystallization temperature, working range, and fragility index through differential scanning calorimetry. The quantity of the impurities described above was determined through Raman spectroscopy peak analysis. Elemental sulfur was doped into a glass to quantify the wt% sulfur content in the glasses. Linear regression analysis was conducted to determine the impact of polysulfide impurities and P1Pdefect impurities on the thermal properties. Polysulfide impurities were found to decrease theTgat rate of nearly 12°C per 1 wt% increase in sulfur concentration. The sulfur concentration does not have a statistically significant impact on the other properties (α = 0.05). The P1Pdefect structure appears to decrease the resistance to crystallization of the glass by measurably decreasing the working range of the glasses, but further study is necessary to fully quantify and determine this.more » « less
-
Abstract In this study, the first fabrication of phase‐shifted Bragg gratings utilizing chalcogenide hybrid inorganic/organic polymers (CHIPs) is presented based on poly(sulfur‐random‐(1,3‐isopropenylbenzene) to measure the thermo‐optic coefficient (TOC) of this new class of optical polymers. The unique properties ofCHIPs, such as high index contrast and low optical losses, are leveraged to fabricate Bragg gratings that enable precise determination of the TOC and glass transition temperature (Tg) of these polymers. The optical measurement introduces a novel technique to measure the TOC and Tgof optical polymers which can be difficult to determine using traditional methods such as differential scanning calorimetry (DSC) after fabrication into photonic device constructs. The findings demonstrate thatCHIPs exhibit low thermo‐optic (TO) effects, making them exceptionally well‐suited for the development of thermally stable photonic integrated circuits.more » « less
An official website of the United States government

