Title: Cross-sections of unknotted ribbon disks and algebraic curves
We resolve parts (A) and (B) of Problem 1.100 from Kirby’s list [Problems in low-dimensional topology, inGeometric topology, AMS/IP Studies in Advanced Mathematics, vol. 2 (American Mathematical Society, Providence, RI, 1997), 35–473] by showing that many nontrivial links arise as cross-sections of unknotted holomorphic disks in the four-ball. The techniques can be used to produce unknotted ribbon surfaces with prescribed cross-sections, including unknotted Lagrangian disks with nontrivial cross-sections. more »« less
Hicks, S F; Pecha, R L; Howard, T J; French, A J; Santonil, Z C; Vanhoy, J R; Ramirez, A_P D; Peters, E E; Liu, S H; Prados-Estevez, F M; et al
(, EPJ Web of Conferences)
Jentschel, M
(Ed.)
γ-ray production cross sections have been deduced for reactions with incident neutrons having energies from 1.5 - 4.7 MeV. Similar measurements were made on a natural Ti sample to establish an absolute normalization. The resulting γ-ray production cross sections are compared to TENDL and TALYS calculations, as well as data from previous measurements. The models are found to describe the production cross sections for mostγrays observed from54Mn and54Fe rather well.
Abstract In recent years,Tdtransition metal dichalcogenides have been heavily explored for their type‐II Weyl topology, gate‐tunable superconductivity, and nontrivial edge states in the monolayer limit. Here, the Fermi surface characteristics and fundamental transport properties of similarly structured 2M‐WSe2bulk single crystals are investigated. The measurements of the angular dependent Shubnikov–de Haas oscillations, with support from first‐principles calculations, reveal multiple three‐ and two‐dimensional Fermi pockets, one of which exhibits a nontrivial Berry's phase. In addition, it is shown that the electronic properties of 2M‐WSe2are similar to those of orthorhombic MoTe2and WTe2, having a single dominant carrier type at high temperatures that evolves into coexisting electron and hole pockets with near compensation at temperatures below 100 K, suggesting the existence of a Lifshitz transition. Altogether, the observations provide evidence towards the topologically nontrivial electronic properties of 2M‐WSe2and motivate further investigation on the topological properties of 2Mtransition metal dichalcogenides in the atomically thin limit.
Aad, G.; Abbott, B.; Abbott, D. C.; Abeling, K.; Abidi, S. H.; Aboulhorma, A.; Abramowicz, H.; Abreu, H.; Abulaiti, Y.; Abusleme Hoffman, A. C.; et al
(, Journal of High Energy Physics)
A<sc>bstract</sc> Measurements of Higgs boson production cross-sections are carried out in the diphoton decay channel using 139 fb−1ofppcollision data at$$ \sqrt{s} $$ = 13 TeV collected by the ATLAS experiment at the LHC. The analysis is based on the definition of 101 distinct signal regions using machine-learning techniques. The inclusive Higgs boson signal strength in the diphoton channel is measured to be$$ {1.04}_{-0.09}^{+0.10} $$ . Cross-sections for gluon-gluon fusion, vector-boson fusion, associated production with aWorZboson, and top associated production processes are reported. An upper limit of 10 times the Standard Model prediction is set for the associated production process of a Higgs boson with a single top quark, which has a unique sensitivity to the sign of the top quark Yukawa coupling. Higgs boson production is further characterized through measurements of Simplified Template Cross-Sections (STXS). In total, cross-sections of 28 STXS regions are measured. The measured STXS cross-sections are compatible with their Standard Model predictions, with ap-value of 93%. The measurements are also used to set constraints on Higgs boson coupling strengths, as well as on new interactions beyond the Standard Model in an effective field theory approach. No significant deviations from the Standard Model predictions are observed in these measurements, which provide significant sensitivity improvements compared to the previous ATLAS results.
Hayrapetyan, A; Tumasyan, A; Adam, W; Andrejkovic, J W; Bergauer, T; Chatterjee, S; Damanakis, K; Dragicevic, M; Hussain, P S; Jeitler, M; et al
(, Journal of High Energy Physics)
A<sc>bstract</sc> Measurements of fiducial and total inclusive cross sections for W and Z boson production are presented in proton-proton collisions at$$ \sqrt{s} $$ = 5.02 and 13 TeV. Electron and muon decay modes (ℓ= e orμ) are studied in the data collected with the CMS detector in 2017, in dedicated runs with reduced instantaneous luminosity. The data sets correspond to integrated luminosities of 298 ± 6 pb−1at 5.02 TeV and 206 ± 5 pb−1at 13 TeV. Measured values of the products of the total inclusive cross sections and the branching fractions at 5.02 TeV areσ(pp→W + X)$$ \mathcal{B} $$ (W→ ℓν) = 7300±10 (stat)±60 (syst)±140 (lumi) pb, andσ(pp→Z+X)$$ \mathcal{B} $$ (Z→ ℓ+ℓ−) = 669±2 (stat)±6 (syst)±13 (lumi) pb for the dilepton invariant mass in the range of 60–120 GeV. The corresponding results at 13 TeV are 20480±10 (stat)±170 (syst)±470 (lumi) pb and 1952±4 (stat)±18 (syst)±45 (lumi) pb. The measured values agree with cross section calculations at next-to-next-to-leading-order in perturbative quantum chromodynamics. Fiducial and total inclusive cross sections, ratios of cross sections of W+and W−production as well as inclusive W and Z boson production, and ratios of these measurements at 5.02 and 13 TeV are reported.
Acharya, S; Adamová, D; Adler, A; Aglieri_Rinella, G; Agnello, M; Agrawal, N; Ahammed, Z; Ahmad, S; Ahn, SU; Ahuja, I; et al
(, Journal of Instrumentation)
Abstract Luminosity determination within the ALICE experiment is based on the measurement, in van der Meer scans, of the cross sections for visible processes involving one or more detectors (visible cross sections). In 2015 and 2018, the Large Hadron Collider provided Pb–Pb collisions at a centre-of-mass energy per nucleon pair of √sNN= 5.02 TeV. Two visible cross sections, associated with particle detection in the Zero Degree Calorimeter (ZDC) and in the V0 detector, were measured in a van der Meer scan.This article describes the experimental set-up and the analysis procedure, and presents the measurement results. The analysis involves a comprehensive study of beam-related effects and an improved fitting procedure, compared to previous ALICE studies, for the extraction of the visible cross section. The resulting uncertainty of both the ZDC-based and the V0-based luminosity measurement for the full sample is 2.5%. The inelastic cross section for hadronic interactions in Pb–Pb collisions at √sNN= 5.02 TeV, obtained by efficiency correction of the V0-based visible cross section, was measured to be 7.67 ± 0.25 b, in agreement with predictions using the Glauber model.
@article{osti_10594332,
place = {Country unknown/Code not available},
title = {Cross-sections of unknotted ribbon disks and algebraic curves},
url = {https://par.nsf.gov/biblio/10594332},
DOI = {10.1112/S0010437X19007012},
abstractNote = {We resolve parts (A) and (B) of Problem 1.100 from Kirby’s list [Problems in low-dimensional topology, inGeometric topology, AMS/IP Studies in Advanced Mathematics, vol. 2 (American Mathematical Society, Providence, RI, 1997), 35–473] by showing that many nontrivial links arise as cross-sections of unknotted holomorphic disks in the four-ball. The techniques can be used to produce unknotted ribbon surfaces with prescribed cross-sections, including unknotted Lagrangian disks with nontrivial cross-sections.},
journal = {Compositio Mathematica},
volume = {155},
number = {2},
publisher = {Cambridge University Press},
author = {Hayden, Kyle},
}
Warning: Leaving National Science Foundation Website
You are now leaving the National Science Foundation website to go to a non-government website.
Website:
NSF takes no responsibility for and exercises no control over the views expressed or the accuracy of
the information contained on this site. Also be aware that NSF's privacy policy does not apply to this site.