Stimulated Brillouin scattering (SBS) microscopy is a nonlinear all-optical imaging method that provides mechanical contrast based on the interaction of laser radiation and acoustical vibrational modes. Featuring high mechanical specificity and sensitivity, three-dimensional sectioning, and practical imaging times, SBS microscopy with (quasi) continuous wave excitation is rapidly advancing as a promising imaging tool for label-free visualization of viscoelastic information of materials and living biological systems. In this article, we introduce the theory of SBS microscopy and review the current state-of-the-art as well as recent innovations, including different approaches to system designs and data analysis. In particular, various performance parameters of SBS microscopy and its applications in the life sciences are described and discussed. Future perspectives for SBS microscopy are also presented.
Realization of chip‐scale nonreciprocal optics such as isolators and circulators is highly demanding for all‐optical signal routing and protection with standard photonics foundry process. Owing to the significant challenge for incorporating magneto‐optical materials on chip, the exploration of magnetic‐free alternatives has become exceedingly imperative in integrated photonics. Here, a chip‐based, tunable all‐optical isolator at the telecommunication band is demonstrated, which is based upon bulk stimulated Brillouin scattering (SBS) in a high‐Q silica microtoroid resonator. This device exhibits remarkable characteristics over most state‐of‐the‐art implements, including high isolation ratio, no insertion loss, and large working power range. Thanks to the guided acoustic wave and accompanying momentum‐conservation condition, bulk SBS also assist in realizing the nonreciprocal parity‐time symmetry in two directly coupled microresonators. The breach of time‐reversal symmetry further makes the design a versatile arena for developing many formidable ultra‐compact devices such as unidirectional single‐mode Brillouin lasers and supersensitive photonic sensors.
more » « less- PAR ID:
- 10457638
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Laser & Photonics Reviews
- Volume:
- 14
- Issue:
- 5
- ISSN:
- 1863-8880
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Narrow linewidth visible light lasers are critical for atomic, molecular and optical (AMO) physics including atomic clocks, quantum computing, atomic and molecular spectroscopy, and sensing. Stimulated Brillouin scattering (SBS) is a promising approach to realize highly coherent on-chip visible light laser emission. Here we report demonstration of a visible light photonic integrated Brillouin laser, with emission at 674 nm, a 14.7 mW optical threshold, corresponding to a threshold density of 4.92 mW μm −2 , and a 269 Hz linewidth. Significant advances in visible light silicon nitride/silica all-waveguide resonators are achieved to overcome barriers to SBS in the visible, including 1 dB/meter waveguide losses, 55.4 million quality factor (Q), and measurement of the 25.110 GHz Stokes frequency shift and 290 MHz gain bandwidth. This advancement in integrated ultra-narrow linewidth visible wavelength SBS lasers opens the door to compact quantum and atomic systems and implementation of increasingly complex AMO based physics and experiments.more » « less
-
Photonic gauge potentials are crucial for manipulating charge-neutral photons like their counterpart electrons in the electromagnetic field, allowing the analogous Aharonov–Bohm effect in photonics and paving the way for critical applications such as photonic isolation. Normally, a gauge potential exhibits phase inversion along two opposite propagation paths. Here we experimentally demonstrate phonon-induced anomalous gauge potentials with noninverted gauge phases in a spatial-frequency space, where near-phase-matched nonlinear Brillouin scatterings enable such unique direction-dependent gauge phases. Based on this scheme, we construct photonic isolators in the frequency domain permitting nonreciprocal propagation of light along the frequency axis, where coherent phase control in the photonic isolator allows switching completely the directionality through an Aharonov–Bohm interferometer. Moreover, similar coherent controlled unidirectional frequency conversions are also illustrated. These results may offer a unique platform for a compact, integrated solution to implement synthetic-dimension devices for on-chip optical signal processing.
-
Strong amplification in integrated photonics is one of the most desired optical functionalities for computing, communications, sensing, and quantum information processing. Semiconductor gain and cubic nonlinearities, such as four-wave mixing and stimulated Raman and Brillouin scattering, have been among the most studied amplification mechanisms on chip. Alternatively, material platforms with strong quadratic nonlinearities promise numerous advantages with respect to gain and bandwidth, among which nanophotonic lithium niobate is one of the most promising candidates. Here, we combine quasi-phase matching with dispersion engineering in nanophotonic lithium niobate waveguides and achieve intense optical parametric amplification. We measure a broadband phase-sensitive on-chip amplification larger than 50 dB/cm in a 6-mm-long waveguide. We further confirm high gain operation in the degenerate and nondegenerate regimes by amplifying vacuum fluctuations to macroscopic levels, with on-chip gains exceeding 100 dB/cm over 600 nm of bandwidth around 2 µm. Our results unlock new possibilities for on-chip few-cycle nonlinear optics, mid-infrared photonics, and quantum photonics.
-
Synthetic photonic materials created by engineering the profile of refractive index or gain/loss distribution, such as negative-index metamaterials or parity-time-symmetric structures, can exhibit electric and magnetic properties that cannot be found in natural materials, allowing for photonic devices with unprecedented functionalities. In this article, we discuss two directions along this line—non-Hermitian photonics and topological photonics—and their applications in nonreciprocal light transport when nonlinearities are introduced. Both types of synthetic structures have been demonstrated in systems involving judicious arrangement of optical elements, such as optical waveguides and resonators. They can exhibit a transition between different phases by adjusting certain parameters, such as the distribution of refractive index, loss, or gain. The unique features of such synthetic structures help realize nonreciprocal optical devices with high contrast, low operation threshold, and broad bandwidth. They provide promising opportunities to realize nonreciprocal structures for wave transport.more » « less