Abstract In this paper, we present counterexamples to maximal$$L^p$$ -regularity for a parabolic PDE. The example is a second-order operator in divergence form with space and time-dependent coefficients. It is well-known from Lions’ theory that such operators admit maximal$$L^2$$ -regularity on$$H^{-1}$$ under a coercivity condition on the coefficients, and without any regularity conditions in time and space. We show that in general one cannot expect maximal$$L^p$$ -regularity on$$H^{-1}(\mathbb {R}^d)$$ or$$L^2$$ -regularity on$$L^2(\mathbb {R}^d)$$ .
more »
« less
On the mth-order Affine Pólya-Szegö Principle
Abstract An affine Pólya-Szegö principle for a family of affine energies, with equality condition characterization, is demonstrated. In particular, this recovers, as special cases, the$$L^p$$ affine Pólya-Szegö principles due to Cianchi, Lutwak, Yang and Zhang, and subsequently Haberl, Schuster and Xiao. Various applications of this new Pólya-Szegö principle are shown.
more »
« less
- Award ID(s):
- 2337630
- PAR ID:
- 10594445
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- The Journal of Geometric Analysis
- Volume:
- 35
- Issue:
- 7
- ISSN:
- 1050-6926
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract LetXbe a compact normal complex space of dimensionnandLbe a holomorphic line bundle onX. Suppose that$$\Sigma =(\Sigma _1,\ldots ,\Sigma _\ell )$$ is an$$\ell $$ -tuple of distinct irreducible proper analytic subsets ofX,$$\tau =(\tau _1,\ldots ,\tau _\ell )$$ is an$$\ell $$ -tuple of positive real numbers, and let$$H^0_0(X,L^p)$$ be the space of holomorphic sections of$$L^p:=L^{\otimes p}$$ that vanish to order at least$$\tau _jp$$ along$$\Sigma _j$$ ,$$1\le j\le \ell $$ . If$$Y\subset X$$ is an irreducible analytic subset of dimensionm, we consider the space$$H^0_0 (X|Y, L^p)$$ of holomorphic sections of$$L^p|_Y$$ that extend to global holomorphic sections in$$H^0_0(X,L^p)$$ . Assuming that the triplet$$(L,\Sigma ,\tau )$$ is big in the sense that$$\dim H^0_0(X,L^p)\sim p^n$$ , we give a general condition onYto ensure that$$\dim H^0_0(X|Y,L^p)\sim p^m$$ . WhenLis endowed with a continuous Hermitian metric, we show that the Fubini-Study currents of the spaces$$H^0_0(X|Y,L^p)$$ converge to a certain equilibrium current onY. We apply this to the study of the equidistribution of zeros inYof random holomorphic sections in$$H^0_0(X|Y,L^p)$$ as$$p\rightarrow \infty $$ .more » « less
-
Abstract We establish weak-type (1, 1) bounds for the maximal function associated with ergodic averaging operators modeled on a wide class of thin deterministic setsB. As a corollary we obtain the corresponding pointwise convergence result on$$L^1$$ . This contributes yet another counterexample for the conjecture of Rosenblatt and Wierdl from 1991 asserting the failure of pointwise convergence on$$L^1$$ of ergodic averages along arithmetic sets with zero Banach density. The second main result is a multiparameter pointwise ergodic theorem in the spirit of Dunford and Zygmund alongBon$$L^p$$ ,$$p>1$$ , which is derived by establishing uniform oscillation estimates and certain vector-valued maximal estimates.more » « less
-
Abstract We introduce a family of Finsler metrics, called the$$L^p$$ -Fisher–Rao metrics$$F_p$$ , for$$p\in (1,\infty )$$ , which generalizes the classical Fisher–Rao metric$$F_2$$ , both on the space of densities$${\text {Dens}}_+(M)$$ and probability densities$${\text {Prob}}(M)$$ . We then study their relations to the Amari–C̆encov$$\alpha $$ -connections$$\nabla ^{(\alpha )}$$ from information geometry: on$${\text {Dens}}_+(M)$$ , the geodesic equations of$$F_p$$ and$$\nabla ^{(\alpha )}$$ coincide, for$$p = 2/(1-\alpha )$$ . Both are pullbacks of canonical constructions on$$L^p(M)$$ , in which geodesics are simply straight lines. In particular, this gives a new variational interpretation of$$\alpha $$ -geodesics as being energy minimizing curves. On$${\text {Prob}}(M)$$ , the$$F_p$$ and$$\nabla ^{(\alpha )}$$ geodesics can still be thought as pullbacks of natural operations on the unit sphere in$$L^p(M)$$ , but in this case they no longer coincide unless$$p=2$$ . Using this transformation, we solve the geodesic equation of the$$\alpha $$ -connection by showing that the geodesic are pullbacks of projections of straight lines onto the unit sphere, and they always cease to exists after finite time when they leave the positive part of the sphere. This unveils the geometric structure of solutions to the generalized Proudman–Johnson equations, and generalizes them to higher dimensions. In addition, we calculate the associate tensors of$$F_p$$ , and study their relation to$$\nabla ^{(\alpha )}$$ .more » « less
-
Abstract Let$$f$$ be an analytic polynomial of degree at most$$K-1$$ . A classical inequality of Bernstein compares the supremum norm of$$f$$ over the unit circle to its supremum norm over the sampling set of the$$K$$ -th roots of unity. Many extensions of this inequality exist, often understood under the umbrella of Marcinkiewicz–Zygmund-type inequalities for$$L^{p},1\le p\leq \infty $$ norms. We study dimension-free extensions of these discretization inequalities in the high-dimension regime, where existing results construct sampling sets with cardinality growing with the total degree of the polynomial. In this work we show that dimension-free discretizations are possible with sampling sets whose cardinality is independent of$$\deg (f)$$ and is instead governed by the maximumindividualdegree of$$f$$ ;i.e., the largest degree of$$f$$ when viewed as a univariate polynomial in any coordinate. For example, we find that for$$n$$ -variate analytic polynomials$$f$$ of degree at most$$d$$ and individual degree at most$$K-1$$ ,$$\|f\|_{L^{\infty }(\mathbf{D}^{n})}\leq C(X)^{d}\|f\|_{L^{\infty }(X^{n})}$$ for any fixed$$X$$ in the unit disc$$\mathbf{D}$$ with$$|X|=K$$ . The dependence on$$d$$ in the constant is tight for such small sampling sets, which arise naturally for example when studying polynomials of bounded degree coming from functions on products of cyclic groups. As an application we obtain a proof of the cyclic group Bohnenblust–Hille inequality with an explicit constant$$\mathcal{O}(\log K)^{2d}$$ .more » « less
An official website of the United States government
