skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 1, 2026

Title: Persistent and emerging threats to Arctic biodiversity and ways to overcome them: a horizon scan
Arctic biodiversity is under threat from both climate-induced environmental change and anthropogenic activity. However, the rapid rate of change and the challenging conditions for studying Arctic environments mean that many research questions must be answered before we can strategically allocate resources for management. Addressing threats to biodiversity in the Arctic is further complicated by the region's complex geopolitics, as eight countries claim jurisdiction over the area, with multiple local considerations such as Indigenous sovereignty and resource rights. Here, we identify research priorities to serve as a starting point for addressing the most pressing threats to Arctic biodiversity. We began by collecting pressing research questions about Arctic biodiversity, thematizing them as either threats or actions, and then categorizing them further into 18 groups. Then, drawing on cross-disciplinary and global expertise of professionals in Arctic science, management, and policy, we considered the barriers to answering these questions and proposed potential solutions that could be implemented if barriers were overcome. Overall, our horizon scan provides an expert assessment of threats (e.g., species’ responses to climate change) and actions (e.g., a lack of fundamental information regarding Arctic biodiversity) needing attention and is intended to guide future conservation action within the Arctic.  more » « less
Award ID(s):
1836839
PAR ID:
10594461
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Arctic Science
Date Published:
Journal Name:
Arctic Science
Volume:
11
ISSN:
2368-7460
Page Range / eLocation ID:
1 to 29
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Machine learning (ML) methods already permeate environmental decision-making, from processing high-dimensional data on earth systems to monitoring compliance with environmental regulations. Of the ML techniques available to address pressing environmental problems (e.g., climate change, biodiversity loss), Reinforcement Learning (RL) may both hold the greatest promise and present the most pressing perils. This paper explores how RL-driven policy refracts existing power relations in the environmental domain while also creating unique challenges to ensuring equitable and accountable environmental decision processes. We leverage examples from RL applications to climate change mitigation and fisheries management to explore how RL technologies shift the distribution of power between resource users, governing bodies, and private industry. 
    more » « less
  2. Understanding how species are responding to environmental change is a central challenge for stewards and managers of fish and wildlife who seek to maintain harvest opportunities for communities and Indigenous peoples. This is a particularly daunting but increasingly important task in remote, high‐latitude regions where environmental conditions are changing rapidly and data collection is logistically difficult. The Arctic–Yukon–Kuskokwim (AYK) region encompasses the northern extent of the Chinook Salmon Oncorhynchus tshawytscha range where populations are experiencing rapid rates of environmental change across both freshwater and marine habitats due to global climate change. Climate–salmon interactions in the AYK region are a particularly pressing issue as many local communities have a deep reliance on a subsistence way of life. Here, we synthesize perspectives shared at a recent workshop on Chinook Salmon declines in the AYK region. The objectives were to discuss current understandings of climate–Chinook Salmon interactions, develop a set of outstanding questions, review available data and its limitations in addressing these questions, and describe the perspectives expressed by participants in this workshop from diverse backgrounds. We conclude by suggesting pathways forward to integrate different types of information and build relationships among communities, academic partners, and fishery management agencies. 
    more » « less
  3. Abstract Transformative governance is key to addressing the global environmental crisis. We explore how transformative governance of complex biodiversity–climate–society interactions can be achieved, drawing on the first joint report between the Intergovernmental Panel on Climate Change and the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services to reflect on the current opportunities, barriers, and challenges for transformative governance. We identify principles for transformative governance under a biodiversity–climate–society nexus frame using four case studies: forest ecosystems, marine ecosystems, urban environments, and the Arctic. The principles are focused on creating conditions to build multifunctional interventions, integration, and innovation across scales; coalitions of support; equitable approaches; and positive social tipping dynamics. We posit that building on such transformative governance principles is not only possible but essential to effectively keep climate change within the desired 1.5 degrees Celsius global mean temperature increase, halt the ongoing accelerated decline of global biodiversity, and promote human well-being. 
    more » « less
  4. Haddon, Lindsay (Ed.)
    Abstract Environmental change and biodiversity loss are but two of the complex challenges facing conservation practitioners and policy makers. Relevant and robust scientific knowledge is critical for providing decision-makers with the actionable evidence needed to inform conservation decisions. In the Anthropocene, science that leads to meaningful improvements in biodiversity conservation, restoration and management is desperately needed. Conservation Physiology has emerged as a discipline that is well-positioned to identify the mechanisms underpinning population declines, predict responses to environmental change and test different in situ and ex situ conservation interventions for diverse taxa and ecosystems. Here we present a consensus list of 10 priority research themes. Within each theme we identify specific research questions (100 in total), answers to which will address conservation problems and should improve the management of biological resources. The themes frame a set of research questions related to the following: (i) adaptation and phenotypic plasticity; (ii) human–induced environmental change; (iii) human–wildlife interactions; (iv) invasive species; (v) methods, biomarkers and monitoring; (vi) policy, engagement and communication; (vii) pollution; (viii) restoration actions; (ix) threatened species; and (x) urban systems. The themes and questions will hopefully guide and inspire researchers while also helping to demonstrate to practitioners and policy makers the many ways in which physiology can help to support their decisions. 
    more » « less
  5. Objective Human dimensions of climate change research in the Arctic often proposes ways for local communities to adapt to changes to their environment, foregrounding problems posed by climate change while treating social, political, and economic factors as background conditions. We explore the relevance of this research paradigm for Inuit by examining how Inuit from Kangiqsujuaq present and discuss the major issues facing their community. Methods We thematically code and analyze the responses of 107 Inuit to three free-response questions about the problems facing their community and the best things about their community. The data were collected as part of a questionnaire for a project focused on food security and food sharing conducted in Kangiqsujuaq, Nunavik, in 2013 to 2014. Results Few respondents mentioned issues relating to climate change among the most pressing problems faced by their community. Rather, a suite of interconnected social and economic issues, particularly substance abuse and the cost of living, emerged as the main concerns of Kangiqsujuarmiut. However, the environment was a central theme in respondents' favorite thing about their community. Conclusions In light of the concerns identified by Inuit, we argue that much research on climate change makes incorrect a priori assumptions and consequently fails to capture aspects of Arctic socioecological systems that are essential for how Inuit are responding to climate change. An inductive, open-ended approach can help produce research more relevant to communities. 
    more » « less