skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 24, 2026

Title: Nutrient enrichment alters the microbiome and increases chytrid load in the American bullfrog Lithobates catesbeianus
Agricultural practices have a profound impact on watershed dynamics, water quality, and the well-being of aquatic life. One major concern is agricultural pollution, particularly the excess of nutrients, which can elevate disease risks in various host-pathogen relationships. However, the exact mechanisms driving this effect remain uncertain. Elevated nutrient levels are believed to significantly influence populations of aquatic environmental bacteria, potentially reshaping the microbiomes of aquatic organisms and affecting their vulnerability to disease. Despite this, the impact of nutrient enrichment on host microbiomes as a link to diseases in aquatic organisms has been largely overlooked. In this study, we investigated the impact of nutrient enrichment on the skin-associated microbial communities of the American bullfrogLithobates catesbeianus. We observed a significant shift in bacterial richness and community composition in nutrient-enriched ponds compared with reference ponds. Although the proportion of the community inhibitory towardsBatrachochytrium dendrobatidis(Bd) did not change significantly,Bdloads were markedly higher in nutrient-enriched ponds. Nutrient enrichment significantly altered carbon utilization patterns as measured by Biolog EcoPlates, and antibiotic resistance was prevalent across all ponds and samples, with resistance to trimethoprim, sulfamethazine, and chloramphenicol significantly higher in nutrient-enriched ponds. Our findings indicate that nutrient enrichment affects the structure and function of skin-associated microbial communities in American bullfrogs, influencing bothBdload and antibiotic resistance.  more » « less
Award ID(s):
2120084
PAR ID:
10594520
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Inter-Research
Date Published:
Journal Name:
Diseases of Aquatic Organisms
Volume:
162
ISSN:
0177-5103
Page Range / eLocation ID:
27 to 34
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract BackgroundHost microbiomes may differ under the same environmental conditions and these differences may influence susceptibility to infection. Amphibians are ideal for comparing microbiomes in the context of disease defense because hundreds of species face infection with the skin-invading microbeBatrachochytrium dendrobatidis(Bd), and species richness of host communities, including their skin bacteria (bacteriome), may be exceptionally high. We conducted a landscape-scale Bd survey of six co-occurring amphibian species in Brazil’s Atlantic Forest. To test the bacteriome as a driver of differential Bd prevalence, we compared bacteriome composition and co-occurrence network structure among the six focal host species. ResultsIntensive sampling yielded divergent Bd prevalence in two ecologically similar terrestrial-breeding species, a group with historically low Bd resistance. Specifically, we detected the highest Bd prevalence inIschnocnema henseliibut no Bd detections inHaddadus binotatus.Haddadus binotatuscarried the highest bacteriome alpha and common core diversity, and a modular network partitioned by negative co-occurrences, characteristics associated with community stability and competitive interactions that could inhibit Bd colonization. ConclusionsOur findings suggest that community structure of the bacteriome might drive Bd resistance inH. binotatus, which could guide microbiome manipulation as a conservation strategy to protect diverse radiations of direct-developing species from Bd-induced population collapses. 
    more » « less
  2. Global amphibian declines are compounded by deadly disease outbreaks caused by the chytrid fungus,Batrachochytrium dendrobatidis(Bd). Much has been learned about the roles of amphibian skin-produced antimicrobial components and microbiomes in controllingBd, yet almost nothing is known about the roles of skin-resident immune cells in anti-Bddefenses. Mammalian mast cells reside within and serve as key immune sentinels in barrier tissues like skin. Accordingly, we investigated the roles ofXenopus laevisfrog mast cells duringBdinfections. Our findings indicate that enrichment ofX. laevisskin mast cells confers anti-Bdprotection and ameliorates the inflammation-associated skin damage caused byBdinfection. This includes a significant reduction in infiltration ofBd-infected skin by neutrophils, promoting mucin content within cutaneous mucus glands, and preventingBd-mediated changes to skin microbiomes. Mammalian mast cells are known for their production of the pleiotropic interleukin-4 (IL4) cytokine and our findings suggest that theX. laevisIL4 plays a key role in manifesting the effects seen following cutaneous mast cell enrichment. Together, this work underscores the importance of amphibian skin-resident immune cells in anti-Bddefenses and illuminates a novel avenue for investigating amphibian host–chytrid pathogen interactions. 
    more » « less
  3. Some of the amphibian populations in Panama are demonstrating slow recovery decades after severe declines caused by the invasion of the fungal pathogenBatrachochytrium dendrobatidis(Bd). However, new species remain to be described and assessed for the mechanisms of disease resilience. We identified seven skin defense peptides from a presumably novel leopard frog species in the Tabasará range, at Buäbti (Llano Tugrí), Ngäbe-Buglé Comarca, and Santa Fe, Veraguas, Panama, herein called the Ngäbe-Buglé leopard frog. Two of the peptides were previously known: brevinin-1BLb fromRana (Lithobates) blairiand a previously hypothesized “ancestral” peptide, ranatuerin-2BPa. We hypothesized that the peptides are active againstBdand shape the microbiome such that the skin bacterial communities are more similar to those of other leopard frogs than of co-occurring host species. Natural mixtures of the collected skin peptides showed a minimum inhibitory concentration againstBdof 100 μg/ml, which was similar to that of other leopard frogs that have been tested. All sampled individuals hosted high intensity of infection withBd. We sampled nine other amphibian species in nearby habitats and found lower prevalence and intensities ofBdinfection. In addition to the pathogen load, the skin microbiomes were examined using 16S rRNA gene targeted amplicon sequencing. When compared to nine co-occurring amphibians, the Ngäbe-Buglé leopard frog had similar skin bacterial richness and anti-Bdfunction, but the skin microbiome structure differed significantly among species. The community composition of the bacterial skin communities was strongly associated with theBdinfection load. In contrast, the skin microbiome composition of the Ngäbe-Buglé leopard frog was similar to that of five North American leopard frog populations and the sympatric and congenericRana (Lithobates) warszewitschii, with 29 of the 46 core bacteria all demonstrating anti-Bdactivity in culture. Because of the highBdinfection load and prevalence in the Ngäbe-Buglé leopard frog, we suggest that treatment to reduce theBdload in this species might reduce the chytridiomycosis risk in the co-occurring amphibian community, but could potentially disrupt the evolution of skin defenses that provide a mechanism for disease resilience in this species. 
    more » « less
  4. Abstract Chronically high levels of inorganic nutrients have been documented in Florida’s coral reefs and are linked to increased prevalence and severity of coral bleaching and disease. Naturally disease-resistant genotypes of the staghorn coralAcropora cervicornisare rare, and it is unknown whether prolonged exposure to acute or chronic high nutrient levels will reduce the disease tolerance of these genotypes. Recently, the relative abundance of the bacterial genusAquarickettsiawas identified as a significant indicator of disease susceptibility inA. cervicornis, and the abundance of this bacterial species was previously found to increase under chronic and acute nutrient enrichment. We therefore examined the impact of common constituents of nutrient pollution (phosphate, nitrate, and ammonium) on microbial community structure in a disease-resistant genotype with naturally low abundances ofAquarickettsia.We found that although this putative parasite responded positively to nutrient enrichment in a disease-resistant host, relative abundances remained low (< 0.5%). Further, while microbial diversity was not altered significantly after 3 weeks of nutrient enrichment, 6 weeks of enrichment was sufficient to shift microbiome diversity and composition. Coral growth rates were also reduced by 6 weeks of nitrate treatment compared to untreated conditions. Together these data suggest that the microbiomes of disease-resistantA. cervicornismay be initially resistant to shifts in microbial community structure, but succumb to compositional and diversity alterations after more sustained environmental pressure. As the maintenance of disease-resistant genotypes is critical for coral population management and restoration, a complete understanding of how these genotypes respond to environmental stressors is necessary to predict their longevity. 
    more » « less
  5. Habitat fragmentation can negatively impact wildlife populations by simplification of ecological interactions, but little is known about how these impacts extend to host-associated symbiotic communities. The symbiotic communities of amphibians play important roles in anti-pathogen defences, particularly against the amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd). In this study, we analyse the role of macroparasitic helminth communities in concert with microbial communities in defending the host against Bd infection within the context of forest fragmentation. We found that skin microbial and helminth communities are disrupted at fragmented habitats, while gut microbiomes appear more resilient to environmental change. We also detected potential protective roles of helminth diversity and anti-pathogen microbial function in limiting Bd infection. Microbial network analysis revealed strong patterns of structure in both skin and gut communities, with helminths playing central roles in these networks. We reveal consistent roles of microbial and helminth diversity in driving host–pathogen interactions and the potential implications of fragmentation on host fitness. 
    more » « less