skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Observations of Localized Horizontal Geomagnetic Field Variations Associated With a Magnetospheric Fast Flow Burst During a Magnetotail Reconnection Event Detected by the THEMIS Spacecraft
Abstract On 20 December 2015, three Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft detected a nightside magnetotail reconnection event in the early main phase of a major geomagnetic storm. The spacecraft (P5, P4, and P3) had their footprints located over North America near the Gillam ground magnetometer station in Canada. Multipoint observations, both in space and from the ground, allow for an examination of the spatiotemporal characteristics of the disturbance on the ground and the associated physical drivers in the magnetosphere and ionosphere. This study shows that the horizontal geomagnetic field d/dt localized (on the scale of 100–300 km) feature observed at Gillam ground magnetometer site was caused by an isolated substorm onset near that station driven by a nightside magnetotail reconnection event detected by three THEMIS spacecraft that were located near the central plasma sheet. A close inspection of equivalent ionospheric current and current amplitude maps derived from ground magnetometer measurements using the spherical elementary current system technique indicates that the location of the localization lies roughly between the upward and downward field aligned current system, which is consistent with other earlier studies. This event represents the first reported observation of ground d/dt localization that is directly linked to nightside magnetotail fast flow bursts and reconnection event during the onset phase of a major Geomagnetic disturbance (GMD).  more » « less
Award ID(s):
2013648 2300579
PAR ID:
10594541
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
American Geophysical Union
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
130
Issue:
1
ISSN:
2169-9380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We analyze a magnetotail reconnection onset event on 3 July 2017 that was observed under otherwise quiescent magnetospheric conditions by a fortuitous conjunction of six space and ground‐based observatories. The study investigates the large‐scale coupling of the solar wind–magnetosphere system that precipitated the onset of the magnetotail reconnection, focusing on the processes that thinned and stretched the cross‐tail current layer in the absence of significant flux loading during a 2‐hr‐long preconditioning phase. It is demonstrated with data in the (a) upstream solar wind, (b) at the low‐latitude magnetopause, (c) in the high‐latitude polar cap, and (d) in the magnetotail that the typical picture of solar wind‐driven current sheet thinning via flux loading does not appear relevant for this particular event. We find that the current sheet thinning was, instead, initiated by a transient solar wind pressure pulse and that the current sheet thinning continued even as the magnetotail and solar wind pressures decreased. We suggest that field line curvature‐induced scattering (observed by magnetospheric multiscale) and precipitation (observed by Defense Meteorological Satellite Program) of high‐energy thermal protons may have evacuated plasma sheet thermal energy, which may require a thinning of the plasma sheet to preserve pressure equilibrium with the solar wind. 
    more » « less
  2. Abstract Recent observations show very near‐Earth reconnection (∼8–13RE) could efficiently power the ring current during the main phase of geomagnetic storms, but whether the recovery phase might be contributed remains unclear. During the recovery phase of the May 2024 major geomagnetic storm, intense auroral brightening and geomagnetic disturbances were observed at midnight, indicative of particle injections. Current wedges observed by mid‐latitude ground magnetometers around midnight suggest dipolarizing flux bundles (DFBs). The latitude of the auroral brightening was clearly lower than usual, suggesting near‐Earth reconnection (NERX) was closer to Earth than during substorms (∼20–30RE). GOES‐18 at midnight detected magnetic field and plasma signatures consistent with DFBs, following an extremely thin current sheet likely compressed by strong upstream dynamic pressure. These results indicate NERX could have been close enough for resultant DFBs to penetrate geosynchronous orbit and contribute to the ring current during the recovery phase. This scenario deserves further examination in future. 
    more » « less
  3. Abstract We present a comprehensive statistical analysis of high‐frequency transient‐large‐amplitude (TLA) magnetic perturbation events that occurred at 12 high‐latitude ground magnetometer stations throughout Solar Cycle 24 from 2009 to 2019. TLA signatures are defined as one or more second‐timescale dB/dtinterval with magnitude ≥6 nT/s within an hour event window. This study characterizes high‐frequency TLA events based on their spatial and temporal behavior, relation to ring current activity, auroral substorms, and nighttime geomagnetic disturbance (GMD) events. We show that TLA events occur primarily at night, solely in the high‐latitude region above 60° geomagnetic latitude, and commonly within 30 min of substorm onsets. The largest TLA events occurred more often in the declining phase of the solar cycle when ring current activity was lower and solar wind velocity was higher, suggesting association to high‐speed streams caused by coronal holes and subsequent corotating interaction regions reaching Earth. TLA perturbations often occurred preceding or within the most extreme nighttime GMD events that have 5–10 min timescales, but the TLA intervals were often even more localized than the ∼300 km effective scale size of GMDs. We provide evidence that shows TLA‐related GMD events are associated with dipolarization fronts in the magnetotail and fast flows toward Earth and are closely temporally associated with poleward boundary intensifications (PBIs) and auroral streamers. The highly localized behavior and connection to the most extreme GMD events suggests that TLA intervals are a ground manifestation of features within rapid and complex ionospheric structures that can drive geomagnetically induced currents. 
    more » « less
  4. Abstract Dipolarizing flux bundles (DFBs) have been suggested to transport energy and momentum from regions of reconnection in the magnetotail to the high latitude ionosphere, where they can generate localized ionospheric currents that can produce large nighttime geomagnetic disturbances (GMDs). In this study we identified DFBs observed in the midnight sector from ∼7 to ∼10 REby THEMIS A, D, and E during days in 2015–2017 whose northern hemisphere magnetic footpoints mapped to regions near Hudson Bay, Canada, and have compared them to isolated GMDs observed by ground magnetometers. We found 6 days during which one or more of these DFBs coincided to within ±3 min with ≥6 nT/s GMDs observed by latitudinally closely spaced ground‐based magnetometers located near those footpoints. Spherical elementary current systems (SECS) maps and all‐sky imager data provided further characterization of two events, showing short‐lived localized intense upward currents, auroral intensifications and/or streamers, and vortical perturbations of a westward electrojet. On all but one of these days the coincident DFB—GMD pairs occurred during intervals of high‐speed solar wind streams but low values of SYM/H. The observations reported here indicate that isolated DFBs generated under these conditions influence only limited spatial regions nearer Earth. In some events, in which the DFBs were observed closer to Earth and with lower Earthward velocities, the GMDs occurred slightly earlier than the DFBs, suggesting that braking had begun before the time of the DFB observation. 
    more » « less
  5. Abstract During periods of increased geomagnetic activity, perturbations within the terrestrial magnetosphere are known to induce currents within conducting materials, at the surface of Earth through rapid changes in the local magnetic field over time (dB/dt). These currents are known as geomagnetically induced currents and have potentially detrimental effects on ground based infrastructure. In this study we undertake case studies of five geomagnetic storms, analyzing a total of 19 days of 1‐s SuperMAG data in order to better understand the magnetic local time (MLT) distribution, size, and occurrence of “spikes” indB/dt, with 131,447 spikes indB/dtexceeding 5 nT/s identified during these intervals. These spikes were concentrated in clusters over three MLT sectors: two previously identified pre‐midnight and dawn region hot‐spots, and a third, lower‐density population centered around 12 MLT (noon). The noon spike cluster was observed to be associated with pressure pulse impacts, however, due to incomplete magnetometer station coverage, this population is not observed for all investigated storms. The magnitude of spikes indB/dtare determined to be greatest within these three “hot‐spot” locations. These spike occurrences were then compared with field‐aligned current (FAC) data, provided by the Active Magnetospheric Planetary Electrodynamic Response Experiment. Spikes are most likely to be co‐located with upward FACs (56%) rather than downward FACs (30%) or no FACs (14%). 
    more » « less