skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 1, 2026

Title: Dielectrophoretic Microfluidic Designs for Precision Cell Enrichments and Highly Viable Label-Free Bacteria Recovery from Blood
Conducting detailed cellular analysis of complex biological samples poses challenges in cell sorting and recovery for downstream analysis. Label-free microfluidics provide a promising solution for these complex applications. In this work, we investigate particle manipulation on two label-free microdevice designs using cDEP to enrich E. coli from whole human blood to mimic infection workflows. E. coli is still a growing source of bacteremia, sepsis, and other infections in modern countries, affecting millions of patients globally. The two microfluidic designs were evaluated for throughput, scaling, precision targeting, and high-viability recovery. While CytoChip D had the potential for higher throughput, given its continuous method of DEP-based sorting to accommodate larger clinical samples like a 10 mL blood draw, it could not effectively recover the bacteria. CytoChip B achieved a high-purity recovery of over 98% of bacteria from whole human blood, even in concentrations on the order of <100 CFU/mL, demonstrating the feasibility of processing and recovering ultra-low concentrations of bacteria for downstream analysis, culture, and drug testing. Future work will aim to scale CytoChip B for larger volume throughput while still achieving high bacteria recovery.  more » « less
Award ID(s):
2019400
PAR ID:
10594560
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Micromachines
Volume:
16
Issue:
2
ISSN:
2072-666X
Page Range / eLocation ID:
236
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Rapid and label-free separation of target cells from biological samples provided unique opportunity for disease diagnostics and treatment. However, even with advanced technologies for cell separation, the limited throughput, high cost and low separation resolution still prevented their utility in separating cells with well-defined physical features from a large volume of biological samples. Here we described an ultrahigh-throughput microfluidic technology, termed as inertial-ferrohydrodynamic cell separation (inertial-FCS), that rapidly sorted through over 60 milliliters of samples at a throughput of 100 000 cells per second in a label-free manner, differentiating the cells based on their physical diameter difference with ∼1–2 μm separation resolution. Through the integration of inertial focusing and ferrohydrodynamic separation, we demonstrated that the resulting inertial-FCS devices could separate viable and expandable circulating tumor cells from cancer patients' blood with a high recovery rate and high purity. We also showed that the devices could enrich lymphocytes directly from white blood cells based on their physical morphology without any labeling steps. This label-free method could address the needs of high throughput and high resolution cell separation in circulating tumor cell research and adoptive cell transfer immunotherapy. 
    more » « less
  2. null (Ed.)
    Microbial contamination of recreation waters is a major concern globally, with pollutants originating from many sources, including human and other animal wastes often introduced during storm events. Fecal contamination is traditionally monitored by employing culture methods targeting fecal indicator bacteria (FIB), namely E . coli and enterococci, which provides only limited information of a few microbial taxa and no information on their sources. Host-associated qPCR and metagenomic DNA sequencing are complementary methods for FIB monitoring that can provide enhanced understanding of microbial communities and sources of fecal pollution. Whole metagenome sequencing (WMS), quantitative real-time PCR (qPCR), and culture-based FIB tests were performed in an urban watershed before and after a rainfall event to determine the feasibility and application of employing a multi-assay approach for examining microbial content of ambient source waters. Cultivated E . coli and enterococci enumeration confirmed presence of fecal contamination in all samples exceeding local single sample recreational water quality thresholds ( E . coli , 410 MPN/100 mL; enterococci, 107 MPN/100 mL) following a rainfall. Test results obtained with qPCR showed concentrations of E . coli , enterococci, and human-associated genetic markers increased after rainfall by 1.52-, 1.26-, and 1.11-fold log 10 copies per 100 mL, respectively. Taxonomic analysis of the surface water microbiome and detection of antibiotic resistance genes, general FIB, and human-associated microorganisms were also employed. Results showed that fecal contamination from multiple sources (human, avian, dog, and ruminant), as well as FIB, enteric microorganisms, and antibiotic resistance genes increased demonstrably after a storm event. In summary, the addition of qPCR and WMS to traditional surrogate techniques may provide enhanced characterization and improved understanding of microbial pollution sources in ambient waters. 
    more » « less
  3. Abstract Wastewater-based epidemiology (WBE) is a powerful tool for monitoring community disease occurrence, but current methods for bacterial detection suffer from limited scalability, the need fora prioriknowledge of the target organism, and the high degree of genetic similarity between different strains of the same species. Here, we show that surface-enhanced Raman spectroscopy (SERS) can be a scalable, label-free method for detection of bacteria in wastewater. We preferentially enhance Raman signal from bacteria in wastewater using positively-charged plasmonic gold nanorods (AuNRs) that electrostatically bind to the bacterial surface. Transmission cryoelectron microscopy (cryoEM) confirms that AuNRs bind selectively to bacteria in this wastewater matrix. We spike the bacterial speciesStaphylococcus epidermidis, Staphylococcus aureus, Serratia marcescens, andEscerichia coliand AuNRs into filter-sterilized wastewater, varying the AuNR concentration to achieve maximum signal across all pathogens. We then collect 540 spectra from each species, and train a machine learning (ML) model to identify bacterial species in wastewater. For bacterial concentrations of 109cells/mL, we achieve an accuracy exceeding 85%. We also demonstrate that this system is effective at environmentally-realistic bacterial concentrations, with a limit of bacterial detection of 104cells/mL. These results are a key first step toward a label-free, high-throughput platform for bacterial WBE. 
    more » « less
  4. null (Ed.)
    We present an integrated microfluidic chip capable of label-free isolation of three major subpopulations of white blood cells (WBCs) (lymphocytes, monocytes and granulocytes) from undiluted whole blood. The proposed system accomplishes 3-part differential sorting of WBCs by: (1) On-chip lysis of RBCs from the blood sample, and (2) Downstream isolation of lymphocytes, monocytes and granulocytes using dielectrophoresis (DEP) technology. 
    more » « less
  5. Beskok, A. (Ed.)
    Dielectrophoresis (DEP) is a powerful tool for label-free sorting of cells, even those with subtle differences in morphological and dielectric properties. Nevertheless, a major limitation is that most existing DEP techniques can efficiently sort cells only at low throughputs (<1 mL h−1). Here, we demonstrate that the integration of a three-dimensional (3D) coupled hydrodynamic-DEP cell pre-focusing module upstream of the main DEP sorting region enables cell sorting with a 10-fold increase in throughput compared to conventional DEP approaches. To better understand the key principles and requirements for high-throughput cell separation, we present a comprehensive theoretical model to study the scaling of hydrodynamic and electrostatic forces on cells at high flow rate regimes. Based on the model, we show that the critical cell-to-electrode distance needs to be ≤10 µm for efficient cell sorting in our proposed microfluidic platform, especially at flow rates ≥ 1 mL h−1. Based on those findings, a computational fluid dynamics model and particle tracking analysis were developed to find optimum operation parameters (e.g., flow rate ratios and electric fields) of the coupled hydrodynamic-DEP 3D focusing module. Using these optimum parameters, we experimentally demonstrate live/dead K562 cell sorting at rates as high as 10 mL h−1 (>150,000 cells min−1) with 90% separation purity, 85% cell recovery, and no negative impact on cell viability. 
    more » « less