skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 1, 2026

Title: Low-Level Mesocyclone Evolution of a Cyclic Tornadic Supercell Observed during TORUS on 17 May 2019
Abstract This case study analyzes the 17 May 2019 cyclic, tornadic supercell from southwest Nebraska observed by the Targeted Observation by Radars and UAS of Supercells (TORUS) field experiment. Specifically, 12 multi-Doppler wind syntheses are generated over a 96-min period from 2301 UTC 17 May to 0037 UTC 18 May using two P-3 airborne radars and the ground-based NOXP research radar. Synthesized winds and reflectivity are assimilated into a diabatic Lagrangian analysis for the retrieval of thermodynamic data. The 4D wind fields are found to correlate well with observed tornadic and nontornadic periods, and several storm-scale features related to low-level mesocyclone (LLM) and near-ground rotation processes are documented. This includes vortex line arches that are a defining feature during the first EF2 tornado, followed by an occlusion process and reorganization period. During the most active tornadic period, backward trajectories reveal both inflow parcels and forward-flank parcels participate in the core of the 0–1-km rotation. While tilting of streamwise vorticity into vertical vorticity and subsequent powerful vertical stretching occurs for both inflow and forward-flank parcels, the solenoidal generation of streamwise vorticity is dominant with the latter. This resembles streamwise vorticity currents found within numerical simulations. Last, an intense left-flank convergence boundary develops coincident with the intensification of storm-relative inflow winds, with its formation and dissipation correlated with the final tornado. The 96-min analysis period with 4D kinematic and thermodynamic data makes this study one of the most detailed supercell case studies presented in the literature. Significance StatementA detailed analysis of a supercell that produced nine tornadoes within a 96-min period is presented. The supercell was observed by five radars, which are used to obtain information about the 3D wind, temperature, and moisture fields. Although computer simulations can provide detailed looks into supercell processes, collecting and analyzing observed supercell data of this quality is challenging and rare. We identify features within the supercell that are correlated with periods of strong and weak tornado production. Additionally, we identify the source region of air that is associated with low-level rotation in the supercell and comment on the importance of temperature gradients observed within the supercell, comparing these results to what has been found in simulations.  more » « less
Award ID(s):
2312090
PAR ID:
10594563
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Monthly Weather Review
Volume:
153
Issue:
6
ISSN:
0027-0644
Page Range / eLocation ID:
909 to 937
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This case study analyzes a tornadic supercell observed in northeast Louisiana as part of the Verification of the Origins of Rotation in Tornadoes Experiment Southeast (VORTEX-SE) on 6–7 April 2018. One mobile research radar (SR1-P), one WSR-88D equivalent (KULM), and two airborne radars (TAFT and TFOR) have sampled the storm at close proximity for ∼70 min through its mature phase, tornadogenesis at 2340 UTC, and dissipation and subsequent ingestion into a developing MCS segment. The 4D wind field and reflectivity from up to four Doppler analyses, combined with 4D diabatic Lagrangian analysis (DLA) retrievals, has enabled kinematic and thermodynamic analysis of storm-scale boundaries leading up to, during, and after the dissipation of the NWS-surveyed EF0 tornado. The kinematic and thermodynamic analyses reveal a transient current of low-level streamwise vorticity leading into the low-level supercell updraft, appearing similar to the streamwise vorticity current (SVC) that has been identified in supercell simulations and previously observed only kinematically. Vorticity dynamical calculations demonstrate that both baroclinity and horizontal stretching play significant roles in the generation and amplification of streamwise vorticity associated with this SVC. While the SVC does not directly feed streamwise vorticity to the tornado–cyclone, its development coincides with tornadogenesis and an intensification of the supercell’s main low-level updraft, although a causal relationship is unclear. Although the mesoscale environment is not high-shear/low-CAPE (HSLC), the updraft of the analyzed supercell shares some similarities to past observations and simulations of HSLC storms in the Southeast United States, most notably a pulse-like updraft that is maximized in the low- to midlevels of the storm. Significance StatementThe purpose of this study is to analyze the airflow and thermodynamics of a highly observed tornado-producing supercell. While computer simulations can provide us with highly detailed looks at the complicated evolution of supercells, it is rare, due to the difficulty of data collection, to collect enough data to perform a highly detailed analysis on a particular supercell, especially in the Southeast United States. We identified a “current” of vorticity—rotating wind—that develops at the intersection of the supercell’s rain-cooled outflow and warm inflow, similar to previous simulations. This vorticity current develops and feeds the storm’s updraft as its tornado develops and the storm intensifies, although it does not directly enter the tornado. 
    more » « less
  2. null (Ed.)
    Abstract A supercell produced a nearly tornadic vortex during an intercept by the Second Verification of the Origins of Rotation in Tornadoes Experiment on 26 May 2010. Using observations from two mobile radars performing dual-Doppler scans, a five-probe mobile mesonet, and a proximity sounding, factors that prevented this vortex from strengthening into a significant tornado are examined. Mobile mesonet observations indicate that portions of the supercell outflow possessed excessive negative buoyancy, likely owing in part to low boundary layer relative humidity, as indicated by a high environmental lifted condensation level. Comparisons to a tornadic supercell suggest that the Prospect Valley storm had enough far-field circulation to produce a significant tornado, but was unable to converge this circulation to a sufficiently small radius. Trajectories suggest that the weak convergence might be due to the low-level mesocyclone ingesting parcels with considerable crosswise vorticity from the near-storm environment, which has been found to contribute to less steady and weaker low-level updrafts in supercell simulations. Yet another factor that likely contributed to the weak low-level circulation was the inability of parcels rich in streamwise vorticity from the forward-flank precipitation region to reach the low-level mesocyclone, likely owing to an unfavorable pressure gradient force field. In light of these results, we suggest that future research should continue focusing on the role of internal, storm-scale processes in tornadogenesis, especially in marginal environments. 
    more » « less
  3. Abstract The development and intensification of low-level mesocyclones in supercell thunderstorms have often been attributed, at least in part, to augmented streamwise vorticity generated baroclinically in the forward flank of supercells. However, the ambient streamwise vorticity of the environment (often quantified via storm-relative helicity), especially near the ground, is particularly skillful at discriminating between nontornadic and tornadic supercells. This study investigates whether the origins of the inflow air into supercell low-level mesocyclones, both horizontally and vertically, can help explain the dynamical role of environmental versus storm-generated vorticity in the development of low-level mesocyclone rotation. Simulations of supercells, initialized with wind profiles common to supercell environments observed in nature, show that the air bound for the low-level mesocyclone primarily originates from the ambient environment (rather than from along the forward flank) and from very close to the ground, often in the lowest 200–400 m of the atmosphere. Given that the near-ground environmental air comprises the bulk of the inflow into low-level mesocyclones, this likely explains the forecast skill of environmental streamwise vorticity in the lowest few hundred meters of the atmosphere. The low-level mesocyclone does not appear to require much augmentation from the development of additional horizontal vorticity in the forward flank. Instead, the dominant contributor to vertical vorticity within the low-level mesocyclone is from the environmental horizontal vorticity. This study provides further context to the ongoing discussion regarding the development of rotation within supercell low-level mesocyclones. Significance StatementSupercell thunderstorms produce the majority of tornadoes, and a defining characteristic of supercells is their rotating updraft, known as the “mesocyclone.” When the mesocyclone is stronger at lower altitudes, the likelihood of tornadoes increases. The purpose of this study is to understand if the rotation of the mesocyclone in supercells is due to horizontal spin present in the ambient environment or whether additional horizontal spin generated by the storm itself primarily drives this rotation. Our results suggest that inflow air into supercells and low-level mesocyclone rotation are mainly due to the properties of the environmental inflow air, especially near the ground. This hopefully provides further context to how our community views the development of low-level mesocyclones in supercells. 
    more » « less
  4. Abstract This study analyzes aboveground thermodynamic observations in three tornadic supercells obtained via swarms of small balloon-borne sondes acting aspseudo-Lagrangiandrifters; the storm-relative winds draw the sondes through the precipitation, outflow, and baroclinic zones, which are believed to play key roles in tornado formation. Three-dimensional thermodynamic analyses are produced from the in situ observations. The coldest air is found at the lowest analysis levels, where virtual potential temperature deficits of 2–5 K are observed. Air parcels within the forward-flank outflow are inferred from their equivalent potential temperatures to have descended only a few hundred meters or less, whereas parcels within the rear-flank outflow are inferred to have downward excursions of 1–2 km. Additionally, the parcels following paths toward the low-level mesocyclone pass through horizontal buoyancy gradients that are strongest in the lowest 750 m and estimated to be capable of baroclinically generating horizontal vorticity having a magnitude of 6–10 × 10−3s−1. A substantial component of the baroclinically generated vorticity is initially crosswise, though the vorticity subsequently could become streamwise given the leftward bending of the airstream in which the vorticity is generated. The baroclinically generated vorticity could contribute to tornado formation upon being tilted upward and stretched near the surface beneath a strong, dynamically forced updraft. Significance StatementSwarms of balloon-borne probes are used to produce the first-ever, three-dimensional mappings of temperature from in situ observations within supercell storms (rotating storms with high tornado potential). Temperature has a strong influence on the buoyancy of air, and horizontal variations of buoyancy generate spin about a horizontal axis. Buoyancy is one of the primary drivers of upward and downward motions in thunderstorms, and in supercell storms, horizontally oriented spin can be tipped into the vertical and amplified by certain arrangements of upward and downward motions. Unfortunately, the long-standing lack of temperature observations has hampered scientists’ ability to evaluate computer simulations and the tornadogenesis theories derived from them. We find that significant spin could be generated by the horizontal buoyancy variations sampled by the probes. 
    more » « less
  5. Abstract A total of 257 supercell proximity soundings obtained for field programs over the central United States are compared with profiles extracted from the SPC mesoscale analysis system (the SFCOA) to understand how errors in the SFCOA and in its baseline model analysis system—the RUC/RAP—might impact climatological assessments of supercell environments. A primary result is that the SFCOA underestimates the low-level storm-relative winds and wind shear, a clear consequence of the lack of vertical resolution near the ground. The near-ground (≤500 m) wind shear is underestimated similarly in near-field, far-field, tornadic, and nontornadic supercell environments. The near-ground storm-relative winds, however, are underestimated the most in the near-field and in tornadic supercell environments. Underprediction of storm-relative winds is, therefore, a likely contributor to the lack of differences in storm-relative winds between nontornadic and tornadic supercell environments in past studies that use RUC/RAP-based analyses. Furthermore, these storm-relative wind errors could lead to an under emphasis of deep-layer SRH variables relative to shallower SRH in discriminating nontornadic from tornadic supercells. The mean critical angles are 5°–15° larger and farther from 90° in the observed soundings than in the SFCOA, particularly in the near field, likely indicating that the ratio of streamwise to crosswise horizontal vorticity is often smaller than that suggested by the SFCOA profiles. Errors in thermodynamic variables are less prevalent, but show low-level CAPE to be too low closer to the storms, a dry bias above the boundary layer, and the absence of shallow near-ground stable layers that are much more prevalent in tornadic supercell environments. Significance StatementA total of 257 radiosonde observations taken close to supercell thunderstorms during field programs over the last 25 years are compared with a model-based analysis system (the SFCOA), which is often used for studying supercell thunderstorm environments. We present error characteristics of the SFCOA as they relate to tornado production and distance to the storm to clarify interpretations of environments favorable for tornado production made from past studies that use the SFCOA. A primary result is that the SFCOA underpredicts the speed and shear of the air flowing toward the storm in many cases, which may lead to different interpretations of variables that are most important for discriminating tornadic from nontornadic supercell thunderstorms. These results help to refine our understanding of the conditions that support tornado formation, which provides guidance on environmental cues that can improve the prediction of supercell tornadoes. 
    more » « less