skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Anomalous Thermal Transport in Compressed Carbon Phases
Carbon materials display intriguing physical properties, including superconductivity and highly anisotropic thermal conductivity found in graphene. Compressive strain can induce structural and bonding transitions in carbon materials and create new carbon phases, but their interplay with thermal conductivity remains largely unexplored. We investigated the in situ high-pressure thermal conductivity of compressed graphitic phases using picosecond transient thermoreflectance and first-principles calculations. Our results show an anomalous thermal conductivity that peaks to 260  W/mK at 15–20 GPa but drops to 3.0  W/mK at ∼35  GPa. Together with complimentary in situ Raman and x-ray diffraction results, the abnormal thermal conductivity trend of compressed carbon is attributed to phonon-mediated conductivity influenced by interlayer buckling and 𝑠⁢𝑝2 to 𝑠⁢𝑝3 transition and, subsequently, the formation of 𝑀-carbon nanocrystals and amorphous carbon. Strain-induced structural and bonding variations provide a wide-range manipulation of thermal and mechanical properties in carbon materials.  more » « less
Award ID(s):
2211660
PAR ID:
10594579
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
American Physical Society
Date Published:
Journal Name:
Physical Review Letters
Volume:
133
Issue:
20
ISSN:
0031-9007
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Extrusion 3D‐printing of biopolymers and natural fiber‐based biocomposites enables the fabrication of complex structures, ranging from implants' scaffolds to eco‐friendly structural materials. However, conventional polymer extrusion requires high energy consumption to reduce viscosity, and natural fiber reinforcement often requires harsh chemical treatments to improve adhesion. We address these challenges by introducing a sustainable framework to fabricate natural biocomposites usingChlorella vulgarismicroalgae as the matrix. Through bioink optimization and process refinement, we produced lightweight, multifunctional materials with hierarchical architectures. Infrared spectroscopy analysis reveals that hydrogen bonding plays a critical role in the binding and reinforcement ofChlorellacells by hydroxyethyl cellulose (HEC). As water content decreases, the hydrogen bonding network evolves from water‐mediated interactions to direct hydrogen bonds between HEC andChlorella, enhancing the mechanical properties. A controlled dehydration process maintains continuous microalgae morphology, preventing cracking. The resulting biocomposites exhibit a bending stiffness of 1.6 GPa and isotropic heat transfer and thermal conductivity of 0.10 W/mK at room temperature, demonstrating effective thermal insulation. These characteristics makeChlorellabiocomposites promising candidates for applications requiring both structural performance and thermal insulation, offering a sustainable alternative to conventional materials in response to growing environmental demands. 
    more » « less
  2. Abstract Amorphous diamond, formed by high-pressure compression of glassy carbon, is of interests for new carbon materials with unique properties such as high compressive strength. Previous studies attributed the ultrahigh strength of the compressed glassy carbon to structural transformation from graphite-likesp2-bonded structure to diamond-likesp3-bonded structure. However, there is no direct experimental determination of the bond structure of the compressed glassy carbon, because of experimental challenges. Here we succeeded to experimentally determine pair distribution functions of a glassy carbon at ultrahigh pressures up to 49.0 GPa by utilizing our recently developed double-stage large volume cell. Our results show that the C-C-C bond angle in the glassy carbon remains close to 120°, which is the ideal angle for thesp2-bonded honey-comb structure, up to 49.0 GPa. Our data clearly indicate that the glassy carbon maintains graphite-like structure up to 49.0 GPa. In contrast, graphene interlayer distance decreases sharply with increasing pressure, approaching values of the second neighbor C-C distance above 31.4 GPa. Linkages between the graphene layers may be formed with such a short distance, but not in the form of tetrahedralsp3bond. The unique structure of the compressed glassy carbon may be the key to the ultrahigh strength. 
    more » « less
  3. Materials with low thermal conductivity are essential to providing thermal insulation to many technological systems, such as electronics, thermoelectrics and aerospace devices. Here, we report ultra-low thermal conductivity of two oxide materials. Sr 2 FeCoO 6−δ has a perovskite-type structure with oxygen vacancies. It shows a thermal conductivity of 0.5 W m −1 K −1 , which is lower than those reported for perovskite oxides. The incorporation of calcium to form Ca 2 FeCoO 6−δ , leads to a structural change and the formation of different coordination geometries around the transition metals. This structural transformation results in a remarkable enhancement of the thermal insulation properties, showing the ultra-low thermal conductivity of 0.05 W m −1 K −1 , which is one of the lowest values found among solid materials to date. A comparison to previously reported perovskite oxides, which show significantly inferior thermal insulation compared to our materials, points to the effect of oxygen-vacancies and their ordering on thermal conductivity. 
    more » « less
  4. The Mg 3 Sb 2− x Bi x family has emerged as the potential candidates for thermoelectric applications due to their ultra-low lattice thermal conductivity ( κ L ) at room temperature (RT) and structural complexity. Here, using ab initio calculations of the electron-phonon averaged (EPA) approximation coupled with Boltzmann transport equation (BTE), we have studied electronic, phonon and thermoelectric properties of Mg 3 Sb 2− x Bi x (x = 0, 1, and 2) monolayers. In violation of common mass-trend expectations, increasing Bi element content with heavier Zintl phase compounds yields an abnormal change in κ L in two-dimensional Mg 3 Sb 2− x Bi x crystals at RT (∼0.51, 1.86, and 0.25 W/mK for Mg 3 Sb 2 , Mg 3 SbBi, and Mg 3 Bi 2 ). The κ L trend was detailedly analyzed via the phonon heat capacity, group velocity and lifetime parameters. Based on quantitative electronic band structures, the electronic bonding through the crystal orbital Hamilton population (COHP) and electron local function analysis we reveal the underlying mechanism for the semiconductor-semimetallic transition of Mg 3 Sb 2-− x Bi x compounds, and these electronic transport properties (Seebeck coefficient, electrical conductivity, and electronic thermal conductivity) were calculated. We demonstrate that the highest dimensionless figure of merit ZT of Mg 3 Sb 2− x Bi x compounds with increasing Bi content can reach ∼1.6, 0.2, and 0.6 at 700 K, respectively. Our results can indicate that replacing heavier anion element in Zintl phase Mg 3 Sb 2− x Bi x materials go beyond common expectations (a heavier atom always lead to a lower κ L from Slack’s theory), which provide a novel insight for regulating thermoelectric performance without restricting conventional heavy atomic mass approach. 
    more » « less
  5. Abstract Kondo lattice materials, where localized magnetic moments couple to itinerant electrons, provide a very rich backdrop for strong electron correlations. They are known to realize many exotic phenomena, with a dramatic example being recent observations of quantum oscillations and metallic thermal conduction in insulators, implying the emergence of enigmatic charge-neutral fermions. Here, we show that thermal conductivity and specific heat measurements in insulating YbIr 3 Si 7 reveal emergent neutral excitations, whose properties are sensitively changed by a field-driven transition between two antiferromagnetic phases. In the low-field phase, a significant violation of the Wiedemann-Franz law demonstrates that YbIr 3 Si 7 is a charge insulator but a thermal metal. In the high-field phase, thermal conductivity exhibits a sharp drop below 300 mK, indicating a transition from a thermal metal into an insulator/semimetal driven by the magnetic transition. These results suggest that spin degrees of freedom directly couple to the neutral fermions, whose emergent Fermi surface undergoes a field-driven instability at low temperatures. 
    more » « less