Abstract Nanocomposite thin films, comprising two or more distinct materials at nanoscale, have attracted significant research interest considering their potential of integrating multiple functionalities for advanced applications in electronics, energy storage, photonics, photovoltaics, and sensing. Among various fabrication technologies, a one-step pulsed laser deposition process enables the self-assembly of materials into vertically aligned nanocomposites (VANs). The demonstrated VAN systems include oxide–oxide, oxide–metal, and nitride–metal VAN films and their growth mechanisms are vastly different. These complexities pose challenges in the designs, materials selection, and prediction of the resulted VAN morphologies and properties. The review examines the key roles that surface energy plays in the VAN growth and provides a generalized materials design guideline combining the two key factors of surface energy and lattice strain/mismatch, along with other factors related to growth kinetics that collectively influence the morphology of VAN films. This review aims to offer valuable guidelines for future material selection and microstructure design in the development of self-assembled VAN films.
more »
« less
New approaches for achieving more perfect transition metal oxide thin films
This perspective considers the enormous promise of epitaxial functional transition metal oxide thin films for future applications in low power electronic and energy applications since they offer wide-ranging and highly tunable functionalities and multifunctionalities, unrivaled among other classes of materials. It also considers the great challenges that must be overcome for transition metal oxide thin films to meet what is needed in the application domain. These challenges arise from the presence of intrinsic defects and strain effects, which lead to extrinsic defects. Current conventional thin film deposition routes often cannot deliver the required perfection and performance. Since there is a strong link between the physical properties, defects and strain, routes to achieving more perfect materials need to be studied. Several emerging methods and modifications of current methods are presented and discussed. The reasons these methods better address the perfection challenge are considered and evaluated.
more »
« less
- Award ID(s):
- 1902644
- PAR ID:
- 10594620
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- APL Materials
- Volume:
- 8
- Issue:
- 4
- ISSN:
- 2166-532X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In recent years, oxide electronics has emerged as one of the most promising new technologies for a variety of electrical and optoelectronic applications, including next-generation displays, solar cells, batteries, and photodetectors. Oxide electronics have a lot of potential because of their high carrier mobilities and ability to be manufactured at low temperatures. However, the preponderance of oxide semiconductors is n-type oxides, limiting present applications to unipolar devices and stifling the development of oxide-based bipolar devices like p-n diodes and complementary metal-oxide–semiconductors. We have contributed to oxide electronics, particularly on transition metal oxide semiconductors of which the cations include In, Zn, Sn and Ga. We have integrated these oxide semiconductors into thin film transistors (TFTs) as active channel layer in light of the unique combination of electronic and optical properties such as high carrier mobility (5-10 cm2/Vs), optical transparency in the visible regime (>~90%) and mild thermal budget processing (200-400°C). In this study, we achieved four different results. The first result is that unlike several previous reports on oxide p-n junctions fabricated exploiting a thin film epitaxial growth technique (known as molecular beam epitaxy, MBE) or a high-powered laser beam process (known as pulsed laser deposition, PLD) that requires ultra-high vacuum conditions, a large amount of power, and is limited for large-area processing, we demonstrate oxide-based heterojunction p-n diodes that consist of sputter-synthesized p-SnOx and n-IGZO of which the manufacturing routes are in-line with current manufacturing requirements. The second result is that the synthesized p-SnOx films are devoid of metallic Sn phases (i.e., Sn0 state) with carrier density tuneability and high carrier mobility (> 2 cm2/Vs). The third result is that the charge blocking performance of the metallurgical junction is significantly enhanced by the engineering of trap/defect density of n-IGZO, which is identified using photoelectron microscopy and valence band measurements. The last result is that the resulting oxide-based p-n heterojunction exhibits a high rectification ratio greater than 103 at ±3 V (highest among the sputter-processed oxide junctions), a low saturation current of ~2×10-10 A, and a small turn-on voltage of ~0.5 V. The outcomes of the current study are expected to contribute to the development of p-type oxides and their industrial device applications such as p-n diodes of which the manufacturing routes are in-line with the current processing requirements.more » « less
-
Abstract Two‐dimensional coordination polymers (2DCPs) have been predicted to exhibit exotic properties such as superconductivity, topological insulating behavior, catalytic activity, and superior ion transport for energy applications; experimentally, these materials have fallen short of their expectation due to the lack of synthesis protocols that yield continuous, large crystallite domains, and highly ordered thin films with controllable physical and chemical properties. Herein, the fabrication of large‐area, highly ordered 2DCP thin films with large crystallite domains using chemical vapor deposition (CVD) approaches is described. It is demonstrated that defects and the packing motifs of 2DCP thin films may be controlled by adjusting the vapor–vapor and vapor–solid interactions of the metal and organic linker precursors during the CVD fabrication process. Such control allows for the fabrication of defects‐controlled 2DCP thin films that show either semiconducting or metallic behavior. The findings provide the first demonstration of tuning the electrical properties of sub 100 nm‐thick continuous 2DCP thin films by controlling their electronic landscape through defect engineering. As such, it is determined that large‐area, highly ordered 2DCP thin films may undergo a semiconducting to metallic transition that is correlated to changes in morphology, crystalline domain sizes, crystallite orientation, defect interactions, and electronic structure.more » « less
-
Two-dimensional materials, such as transition metal dichalcogenides, have generated much interest due to their strain-sensitive electronic, optical, magnetic, superconducting, or topological properties. Harnessing control over their strain state may enable new technologies that operate by controlling these materials’ properties in devices such as straintronic transistors. Piezoelectric oxides have been proposed as one method to control such strain states on the device scale. However, there are few studies of how conformal 2D materials remain on oxide materials with respect to dynamic applications of the strain. Non-conformality may lead to non-optimal strain transfer. In this work, we explore this aspect of oxide-2D adhesion in the nanoscale switching of the substrate structural phase in thin 1T′-MoTe 2 attached to a mixed-phase thin-film BiFeO 3 (BFO), a multiferroic oxide with an electric-field induced structural phase transition that can generate mechanical strains of up to 2%. We observe that flake thickness impacts the conformality of 1T′-MoTe 2 to structural changes in BFO, but below four layers, 1T′-MoTe 2 fully conforms to the nanoscale BFO structural changes. The conformality of few-layer 1T′-MoTe 2 suggests that BFO is an excellent candidate for deterministic, nanoscale strain control for 2D materials.more » « less
-
The discovery of oxide electronics is of increasing importance today as one of the most promising new technologies and manufacturing processes for a variety of electronic and optoelectronic applications such as next-generation displays, batteries, solar cells, memory devices, and photodetectors[1]. The high potential use seen in oxide electronics is due primarily to their high carrier mobilities and their ability to be fabricated at low temperatures[2]. However, since the majority of oxide semiconductors are n-type oxides, current applications are limited to unipolar devices, eventually developing oxide-based bipolar devices such as p-n diodes and complementary metal-oxide semiconductors. We have contributed to a wide range of oxide semiconductors and their electronics and optoelectronic device applications. Particularly, we have demonstrated n-type oxide-based thin film transistors (TFT), integrating In 2 O 3 -based n-type oxide semiconductors from binary cation materials to ternary cation species including InZnO, InGaZnO (IGZO), and InAlZnO. We have suggested channel/metallization contact strategies to achieve stable and high TFT performance[3, 4], identified vacancy-based native defect doping mechanisms[5], suggested interfacial buffer layers to promote charge injection capability[6], and established the role of third cation species on the carrier generation and carrier transport[7]. More recently, we have reported facile manufacturing of p-type SnOx through reactive magnetron sputtering from a Sn metal target[8]. The fabricated p-SnOx was found to be devoid of metallic phase of Sn from x-ray photoelectron spectroscopy and demonstrated stable performance in a fully oxide-based p-n heterojunction together with n-InGaZnO. The oxide-based p-n junctions exhibited a high rectification ratio greater than 10 3 at ±3 V, a low saturation current of ~2x10 -10 , and a small turn-on voltage of -0.5 V. In this presentation, we review recent achievements and still remaining issues in transition metal oxide semiconductors and their device applications, in particular, bipolar applications including p-n heterostructures and complementary metal-oxide-semiconductor devices as well as single polarity devices such as TFTs and memristors. In addition, the fundamental mechanisms of carrier transport behaviors and doping mechanisms that govern the performance of these oxide-based devices will also be discussed. ACKNOWLEDGMENT This work was supported by the U.S. National Science Foundation (NSF) Award No. ECCS-1931088. S.L. and H.W.S. acknowledge the support from the Improvement of Measurement Standards and Technology for Mechanical Metrology (Grant No. 20011028) by KRISS. K.N. was supported by Basic Science Research Program (NRF-2021R11A1A01051246) through the NRF Korea funded by the Ministry of Education. REFERENCES [1] K. Nomura et al. , Nature, vol. 432, no. 7016, pp. 488-492, Nov 25 2004. [2] D. C. Paine et al. , Thin Solid Films, vol. 516, no. 17, pp. 5894-5898, Jul 1 2008. [3] S. Lee et al. , Journal of Applied Physics, vol. 109, no. 6, p. 063702, Mar 15 2011, Art. no. 063702. [4] S. Lee et al. , Applied Physics Letters, vol. 104, no. 25, p. 252103, 2014. [5] S. Lee et al. , Applied Physics Letters, vol. 102, no. 5, p. 052101, Feb 4 2013, Art. no. 052101. [6] M. Liu et al. , ACS Applied Electronic Materials, vol. 3, no. 6, pp. 2703-2711, 2021/06/22 2021. [7] A. Reed et al. , Journal of Materials Chemistry C, 10.1039/D0TC02655G vol. 8, no. 39, pp. 13798-13810, 2020. [8] D. H. Lee et al. , ACS Applied Materials & Interfaces, vol. 13, no. 46, pp. 55676-55686, 2021/11/24 2021.more » « less
An official website of the United States government
