This dataset are produced by a manuscript (Biodegradation of Ancient Organic Carbon Fuels Seabed Methane Emission at the Arctic Continental Shelves) to be submitted to the Journal of Geophysical Research - Global Biogeochemical Cycles. I The file "MethaneEmission_Permafrost" contains the predicted temperature, pressure, pore water salinity, ice stable zone, methane hydrate stable zone, ice saturation, methane hydrate saturation, free methane gas saturation, labile organic carbon content, stable organic carbon content, and methanogenesis rate from seafloor to 1200 m depth from 18,000 years before present to 2,000 years after present for 8 different simulation scenarios. The file "Seabed_Methane_Flux" contains the predicted seabed methane emission rate from 18,000 years before present to 2,000 years after present for 8 different simulation scenarios. Detailed information about the model could be found in the paper Biodegradation of Ancient Organic Carbon Fuels Seabed Methane Emission at the Arctic Continental Shelves.
more »
« less
Dynamic excitations of chiral magnetic textures
Spin eigenexcitations of skyrmions and related chiral magnetic textures have attracted considerable interest over the recent years owing to their strong potential for applications in information processing and microwave devices. The emergence of novel material systems, such as synthetic ferrimagnets and antiferromagnets, the continuing progress in microfabrication and nanofabrication techniques, and the development of more sophisticated characterization methods will undoubtedly provide a further boost to this young particular line of research. This Perspective summarizes the most significant advances during the past years and indicates future directions of both theoretical and experimental works.
more »
« less
- Award ID(s):
- 1720633
- PAR ID:
- 10594728
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- APL Materials
- Volume:
- 8
- Issue:
- 10
- ISSN:
- 2166-532X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This dataset contains meteorology and snow observation data collected at sites in the southwestern Colorado Rocky Mountains during water years 2019-2021. Data collection had an emphasis on paired open-forest sites and included three forested elevations. In total, we present 270 snow pit observations, 4,019 snow depth measurements, and three years of meteorological forcing from two weather stations (one in a meadow, the other in an adjacent forest). The dataset is described in a forthcoming publication of the same name: A meteorology and snow dataset from adjacent forested and meadow sites at Crested Butte, CO, USA</em> (Bonner et al., 2022).</p> All snow observation and meteorological forcing data are available as both .nc and .mat files. Additionally, original digitized copies of snow pit observations are provided as .gsheet/.xlxs files.</p> This dataset will continue to be updated, via this repository, as additional years of data are collected.</p>more » « less
-
Abstract ContextYouth with type 1 diabetes (T1D) struggle to meet and sustain hemoglobin A1c (HbA1c) targets. Youth enrolled in the Pilot 4T Study improved HbA1c by 0.5% at 1 year, compared to historical controls. ObjectiveTo assess 3 years of glycemic outcomes in the Pilot 4T Study. MethodsThe Pilot 4T Extension cohort was prospectively followed to determine changes in HbA1c and continuous glucose monitoring (CGM) metrics over 3 years at the Stanford Medicine Children's Health Diabetes Clinic. Youth with T1D in the Pilot 4T Study enrolled in the extension phase started CGM in the first month of diabetes diagnosis, received intensified education and remote patient monitoring (RPM) weekly for the first year of diabetes diagnosis, and monthly RPM in the extension phase. HbA1c and CGM metrics were evaluated over the first 3 years of diagnosis. ResultsIn the Pilot 4T cohort, 78.5% (n = 102) of participants enrolled in the study extension phase and were followed through 3 years. The adjusted difference in HbA1c at 3 years was 1.2% (95% CI 0.7%-1.7%) lower in the Pilot 4T cohort than in the Historical cohort. In the Pilot 4T cohort, 68% and 37% met the <7.5% and <7% HbA1c targets at 3 years, respectively, compared to 37% and 20% in the Historical cohort. ConclusionYouth with T1D in the Pilot 4T extension phase sustained improvements in HbA1c over 3 years. Focusing resources on intensive management during the first year after T1D diagnosis may impact long-term glycemia.more » « less
-
Abstract Snowpack provides the majority of predictive information for water supply forecasts (WSFs) in snow-dominated basins across the western United States. Drought conditions typically accompany decreased snowpack and lowered runoff efficiency, negatively impacting WSFs. Here, we investigate the relationship between snow water equivalent (SWE) and April–July streamflow volume (AMJJ-V) during drought in small headwater catchments, using observations from 31 USGS streamflow gauges and 54 SNOTEL stations. A linear regression approach is used to evaluate forecast skill under different historical climatologies used for model fitting, as well as with different forecast dates. Experiments are constructed in which extreme hydrological drought years are withheld from model training, that is, years with AMJJ-V below the 15th percentile. Subsets of the remaining years are used for model fitting to understand how the climatology of different training subsets impacts forecasts of extreme drought years. We generally report overprediction in drought years. However, training the forecast model on drier years, that is, below-median years (P15,P57.5], minimizes residuals by an average of 10% in drought year forecasts, relative to a baseline case, with the highest median skill obtained in mid- to late April for colder regions. We report similar findings using a modified National Resources Conservation Service (NRCS) procedure in nine large Upper Colorado River basin (UCRB) basins, highlighting the importance of the snowpack–streamflow relationship in streamflow predictability. We propose an “adaptive sampling” approach of dynamically selecting training years based on antecedent SWE conditions, showing error reductions of up to 20% in historical drought years relative to the period of record. These alternate training protocols provide opportunities for addressing the challenges of future drought risk to water supply planning. Significance StatementSeasonal water supply forecasts based on the relationship between peak snowpack and water supply exhibit unique errors in drought years due to low snow and streamflow variability, presenting a major challenge for water supply prediction. Here, we assess the reliability of snow-based streamflow predictability in drought years using a fixed forecast date or fixed model training period. We critically evaluate different training protocols that evaluate predictive performance and identify sources of error during historical drought years. We also propose and test an “adaptive sampling” application that dynamically selects training years based on antecedent SWE conditions providing to overcome persistent errors and provide new insights and strategies for snow-guided forecasts.more » « less
-
Abstract Lake surface temperature extremes have shifted over recent decades, leading to significant ecological and economic impacts. Here, we employed a hydrodynamic-ice model, driven by climate data, to reconstruct over 80 years of lake surface temperature data across the world’s largest freshwater bodies. We analyzed lake surface temperature extremes by examining changes in the 10th and 90th percentiles of the detrended lake surface temperature distribution, alongside heatwaves and cold-spells. Our findings reveal a 20–60% increase in the 10 and 90 percentiles detrended lake surface temperature in the last 50 years relative to the first 30 years. Heatwave and cold-spell intensities, measured via annual degree days, showed strong coherence with the Arctic Oscillation (period: 2.5 years), Southern Oscillation Index (4 years), and Pacific Decadal Oscillation (6.5 years), indicating significant links between lake surface temperature extremes and both interannual and decadal climate teleconnections. Notably, heatwave and cold-spell intensities for all lakes surged by over 100% after 1996 or 1976, aligning with the strongest El-Niño and a major shift in the Pacific Decadal Oscillation, respectively, marking potential regional climate tipping points. This emphasizes the long-lasting impacts of climate change on large lake thermodynamics, which cascade through larger ecological and regional climate systems.more » « less
An official website of the United States government
