Surface-enhanced Raman spectroscopy (SERS) is an attractive method for bio-chemical sensing due to its potential for single molecule sensitivity and the prospect of DNA composition analysis. In this manuscript we leverage metal specific chemical enhancement effect to detect differences in SERS spectra of 200-base length single-stranded DNA (ssDNA) molecules adsorbed on gold or silver nanorod substrates, and then develop and train a linear regression as well as neural network models to predict the composition of ssDNA. Our results indicate that employing substrates of different metals that host a given adsorbed molecule leads to distinct SERS spectra, allowing to probe metal-molecule interactions under distinct chemical enhancement regimes. Leveraging this difference and combining spectra from different metals as an input for PCA (Principal Component Analysis) and NN (Neural Network) models, allows to significantly lower the detection errors compared to manual feature-choosing analysis as well as compared to the case where data from single metal is used. Furthermore, we show that NN model provides superior performance in the presence of complex noise and data dispersion factors that affect SERS signals collected from metal substrates fabricated on different days.
more »
« less
SERS-based ssDNA composition analysis with inhomogeneous peak broadening and reservoir computing
Surface-enhanced Raman spectroscopy employed in conjunction with post-processing machine learning methods is a promising technique for effective data analysis, allowing one to enhance the molecular and chemical composition analysis of information rich DNA molecules. In this work, we report on a room temperature inhomogeneous broadening as a function of the increased adenine concentration and employ this feature to develop one-dimensional and two dimensional chemical composition classification models of 200 long single stranded DNA sequences. Afterwards, we develop a reservoir computing chemical composition classification scheme of the same molecules and demonstrate enhanced performance that does not rely on manual feature identification.
more »
« less
- PAR ID:
- 10594729
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- Applied Physics Letters
- Volume:
- 120
- Issue:
- 2
- ISSN:
- 0003-6951
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The origin and function of chirality in DNA, proteins, and other building blocks of life represent a central question in biology. Observations of spin polarization and magnetization associated with electron transport through chiral molecules, known collectively as the chiral induced spin selectivity effect, suggest that chirality improves electron transfer. Using reconfigurable nanoscale control over conductivity at the LaAlO3/SrTiO3interface, we create chiral electron potentials that explicitly lack mirror symmetry. Quantum transport measurements on these chiral nanowires reveal enhanced electron pairing persisting to high magnetic fields (up to 18 tesla) and oscillatory transmission resonances as functions of both magnetic field and chemical potential. We interpret these resonances as arising from an engineered axial spin-orbit interaction within the chiral region. The ability to create one-dimensional electron waveguides with this specificity creates opportunities to test, via analog quantum simulation, theories about chirality and spin-polarized electron transport in one-dimensional geometries.more » « less
-
null (Ed.)Abstract Surface-enhanced Raman scattering (SERS) process results in a tremendous increase of Raman scattering cross section of molecules adsorbed to plasmonic metals and influenced by numerous physico-chemical factors such as geometry and optical properties of the metal surface, orientation of chemisorbed molecules and chemical environment. While SERS holds promise for single molecule sensitivity and optical sensing of DNA sequences, more detailed understanding of the rich physico-chemical interplay between various factors is needed to enhance predictive power of existing and future SERS-based DNA sensing platforms. In this work, we report on experimental results indicating that SERS spectra of adsorbed single-stranded DNA (ssDNA) isomers depend on the order on which individual bases appear in the 3-base long ssDNA due to intramolecular interaction between DNA bases. Furthermore, we experimentally demonstrate that the effect holds under more general conditions when the molecules do not experience chemical enhancement due to resonant charge transfer effect and also under standard Raman scattering without electromagnetic or chemical enhancements. Our numerical simulations qualitatively support the experimental findings and indicate that base permutation results in modification of both Raman and chemically enhanced Raman spectra.more » « less
-
Abstract DNA mechanical properties play a critical role in every aspect of DNA-dependent biological processes. Recently a high throughput assay named loop-seq has been developed to quantify the intrinsic bendability of a massive number of DNA fragments simultaneously. Using the loop-seq data, we develop a software tool, DNAcycP, based on a deep-learning approach for intrinsic DNA cyclizability prediction. We demonstrate DNAcycP predicts intrinsic DNA cyclizability with high fidelity compared to the experimental data. Using an independent dataset from in vitro selection for enrichment of loopable sequences, we further verified the predicted cyclizability score, termed C-score, can well distinguish DNA fragments with different loopability. We applied DNAcycP to multiple species and compared the C-scores with available high-resolution chemical nucleosome maps. Our analyses showed that both yeast and mouse genomes share a conserved feature of high DNA bendability spanning nucleosome dyads. Additionally, we extended our analysis to transcription factor binding sites and surprisingly found that the cyclizability is substantially elevated at CTCF binding sites in the mouse genome. We further demonstrate this distinct mechanical property is conserved across mammalian species and is inherent to CTCF binding DNA motif.more » « less
-
Abstract A quasi‐one‐dimensional organic semiconductor, hepta(p‐phenylene vinylene) (HPV), was incorporated into a DNA tensegrity triangle motif using a covalent strategy. 3D arrays were self‐assembled from an HPV‐DNA pseudo‐rhombohedron edge by rational design and characterized by X‐ray diffraction. Templated by the DNA motif, HPV molecules exist as single‐molecule fluorescence emitters at the concentration of 8 mM within the crystal lattice. The anisotropic fluorescence emission from HPV‐DNA crystals indicates HPV molecules are well aligned in the macroscopic 3D DNA lattices. Sophisticated nanodevices and functional materials constructed from DNA can be developed from this strategy by addressing functional components with molecular accuracy.more » « less
An official website of the United States government
