skip to main content


Search for: All records

Award ID contains: 1901844

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We present an ultra-compact single-shot spectrometer on silicon platform for sparse spectrum reconstruction. It consists of 32 stratified waveguide filters (SWFs) with diverse transmission spectra for sampling the unknown spectrum of the input signal and a specially designed ultra-compact structure for splitting the incident signal into those 32 filters with low power imbalance. Each SWF has a footprint less than 1 µm × 30 µm, while the 1 × 32 splitter and 32 filters in total occupy an area of about 35 µm × 260 µm, which to the best of our knowledge, is the smallest footprint spectrometer realized on silicon photonic platform. Experimental characteristics of the fabricated spectrometer demonstrate a broad operating bandwidth of 180 nm centered at 1550 nm and narrowband peaks with 0.45 nm Full-Width-Half-Maximum (FWHM) can be clearly resolved. This concept can also be implemented using other material platforms for operation in optical spectral bands of interest for various applications.

     
    more » « less
  2. Abstract

    An ultra‐high resolution Fourier transform spectrometer (FTS) realized in silicon photonic platform that can operate with broad band, narrow band as well as a combination of broad band and narrow band signals is reported. The ultra‐high resolution of the spectrometer is achieved by exploiting multiple techniques: a Michelson interferometer (MI) structure to increase the optical path delay (OPD), a hybrid waveguide design to reduce insertion loss, an optimized heater and air trenches to achieve higher thermal efficiency. Moreover, to further increase the OPD of the spectrometer to increase its resolution, a novel multiple interferometers approach is employed which combines balanced MI withNstatically imbalanced MIs, thereby increasing the OPD of a single MI by factor ofN+ 1. An FTS spectrometer consisting ofN= 2 such MIs is fabricated and experimentally characterized using unknown broad bandwidth input signal spectra of about 180 nm centered around 1550 nm, a narrow line laser input signal, and a combination of broad and narrow band signals demonstrating spectral resolution of about 0.16 nm.

     
    more » « less
  3. Abstract

    Microwave photonics uses light to carry and process microwave signals over a photonic link. However, light can instead be used as a stimulus to microwave devices that directly control microwave signals. Such optically controlled amplitude and phase-shift switches are investigated for use in reconfigurable microwave systems, but they suffer from large footprint, high optical power level required for switching, lack of scalability and complex integration requirements, restricting their implementation in practical microwave systems. Here, we report Monolithic Optically Reconfigurable Integrated Microwave Switches (MORIMSs) built on a CMOS compatible silicon photonic chip that addresses all of the stringent requirements. Our scalable micrometer-scale switches provide higher switching efficiency and require optical power orders of magnitude lower than the state-of-the-art. Also, it opens a new research direction on silicon photonic platforms integrating microwave circuitry. This work has important implications in reconfigurable microwave and millimeter wave devices for future communication networks.

     
    more » « less
  4. The quantum theory of optical coherence plays a ubiquitous role in identifying optical emitters. An unequivocal identification, however, presumes that the photon number statistics is resolved from timing uncertainties. We demonstrate from first principle that the observed nth-order temporal coherence is a n-fold convolution of the instrument responses and the expected coherence. The consequence is detrimental in which the photon number statistics is masked from the unresolved coherence signatures. The experimental investigations are thus far consistent with the theory developed. We envision the present theory will mitigate the false identification of optical emitters and enlarge the coherence deconvolution to an arbitrary order.

     
    more » « less
  5. Abstract The proliferation of Internet-of-Things has promoted a wide variety of emerging applications that require compact, lightweight, and low-cost optical spectrometers. While substantial progresses have been made in the miniaturization of spectrometers, most of them are with a major focus on the technical side but tend to feature a lower technology readiness level for manufacturability. More importantly, in spite of the advancement in miniaturized spectrometers, their performance and the metrics of real-life applications have seldomly been connected but are highly important. This review paper shows the market trend for chip-scale spectrometers and analyzes the key metrics that are required to adopt miniaturized spectrometers in real-life applications. Recent progress addressing the challenges of miniaturization of spectrometers is summarized, paying a special attention to the CMOS-compatible fabrication platform that shows a clear pathway to massive production. Insights for ways forward are also presented. 
    more » « less
  6. 3D imaging is essential for the study and analysis of a wide variety of structures in numerous applications. Coherent photonic systems such as optical coherence tomography (OCT) and light detection and ranging (LiDAR) are state-of-the-art approaches, and their current implementation can operate in regimes that range from under a few millimeters to over more than a kilometer. We introduce a general method, which we call universal photonics tomography (UPT), for analyzing coherent tomography systems, in which conventional methods such as OCT and LiDAR may be viewed as special cases. We demonstrate a novel approach (to our knowledge) based on the use of phase modulation combined with multirate signal processing to collect positional information of objects beyond the Nyquist limits.

     
    more » « less
  7. Bragg-grating based cavities and coupler designs present opportunities for flexible allocation of bandwidth and spectrum in silicon photonic devices. Integrated silicon photonic devices are moving toward mainstream, mass adoption, leading to the need for compact Bragg grating based designs. In this work we present a design and experimental validation of a cascaded contra-directional Bragg-grating coupler with a measured main lobe to side-lobe contrast of 12.93 dB. This level of performance is achieved in a more compact size as compared to conventional apodized gratings, and a similar design philosophy can be used to improve side-lobe reduction in grating-based mirror design for on-chip lasers and other cavity-based designs as well.

     
    more » « less