Entropy-stabilized oxides are single-phase, multicomponent oxides that are stabilized by a large entropy of mixing, ΔS, overcoming a positive enthalpy. Due to the −TΔS term in the Gibbs' free energy, G, it can be hypothesized that entropy-stabilized oxides demonstrate a robust thermal stability. Here, we investigate the high temperature stability (1300–1700 °C) of the prototypical entropy-stabilized rocksalt oxide (MgCoNiCuZn)0.2O in air. We find that at temperatures >1300 °C, the material gradually loses Cu and Zn with increasing temperature. Cu is lost through a selective melting as a Cu-rich liquid phase is formed. Zn is sublimed from the rocksalt phase at approximately similar temperatures to those corresponding to the Cu loss, significantly below both the melting temperature of ZnO and its solubility limit in a rocksalt phase. The elemental loss progressively reduces the entropy of mixing and results in a multiphase solid upon quenching to room temperature. We posit that the high-temperature solubility of Cu and Zn is correlated providing further evidence for entropic stabilization over general solubility arguments.
more »
« less
On the thermal and mechanical properties of Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O across the high-entropy to entropy-stabilized transition
As various property studies continue to emerge on high entropy and entropy-stabilized ceramics, we seek a further understanding of the property changes across the phase boundary between “high-entropy” and “entropy-stabilized” phases. The thermal and mechanical properties of bulk ceramic entropy stabilized oxide composition Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O are investigated across this critical transition temperature via the transient plane-source method, temperature-dependent x-ray diffraction, and nano-indentation. The thermal conductivity remains constant within uncertainty across the multi-to-single phase transition at a value of ≈2.5 W/mK, while the linear coefficient of thermal expansion increases nearly 24% from 10.8 to 14.1 × 10−6 K−1. Mechanical softening is also observed across the transition.
more »
« less
- Award ID(s):
- 2011839
- PAR ID:
- 10594915
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- APL Materials
- Volume:
- 10
- Issue:
- 12
- ISSN:
- 2166-532X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Manipulating a crystalline material's configurational entropy through the introduction of unique atomic species can produce novel materials with desirable mechanical and electrical properties. From a thermal transport perspective, large differences between elemental properties such as mass and interatomic force can reduce the rate at which phonons carry heat and thus reduce the thermal conductivity. Recent advances in materials synthesis are enabling the fabrication of entropy‐stabilized ceramics, opening the door for understanding the implications of extreme disorder on thermal transport. Measuring the structural, mechanical, and thermal properties of single‐crystal entropy‐stabilized oxides, it is shown that local ionic charge disorder can effectively reduce thermal conductivity without compromising mechanical stiffness. These materials demonstrate similar thermal conductivities to their amorphous counterparts, in agreement with the theoretical minimum limit, resulting in this class of material possessing the highest ratio of elastic modulus to thermal conductivity of any isotropic crystal.more » « less
-
Abstract Discovering multifunctional materials with tunable plasmonic properties, capable of surviving harsh environments is critical for advanced optical and telecommunication applications. We chose high-entropy transition-metal carbides because of their exceptional thermal, chemical stability, and mechanical properties. By integrating computational thermodynamic disorder modeling and time-dependent density functional theory characterization, we discovered a crossover energy in the infrared and visible range, corresponding to a metal-to-dielectric transition, exploitable for plasmonics. It was also found that the optical response of high-entropy carbides can be largely tuned from the near-IR to visible when changing the transition metal components and their concentration. By monitoring the electronic structures, we suggest rules for optimizing optical properties and designing tailored high-entropy ceramics. Experiments performed on the archetype carbide HfTa 4 C 5 yielded plasmonic properties from room temperature to 1500K. Here we propose plasmonic transition-metal high-entropy carbides as a class of multifunctional materials. Their combination of plasmonic activity, high-hardness, and extraordinary thermal stability will result in yet unexplored applications.more » « less
-
Entropy stabilized oxide of MgNiCoCuZnO5, also known as J14, is a material of active research interest due to a high degree of lattice distortion and tunability. Lattice distortion in J14 plays a crucial role in understanding the elastic constants and lattice thermal conductivity within the single-phase crystal. In this work, a neuroevolution machine learning potential (NEP) is developed for J14, and its accuracy has been compared to density functional theory calculations. The training errors for energy, force, and virial are 5.60 meV/atom, 97.90 meV/Å, and 45.67 meV/atom, respectively. Employing NEP potential, lattice distortion, and elastic constants is studied up to 900 K. In agreement with experimental findings, this study shows that the average lattice distortion of oxygen atoms is relatively higher than that of all transition metals in entropy-stabilized oxide. The observed distortion saturation in the J14 arises from the competing effects of minimum site distortion, which increases with increasing temperature due to enhanced thermal vibrations, and maximum site distortion, which decreases with increasing temperature. Furthermore, a series of molecular dynamics simulations up to 900 K are performed to study the stress–strain behavior. The elastic constants, bulk modulus, and ultimate tensile strength obtained from these simulations indicate a linear decrease in these properties with temperature, as J14 becomes softer owing to thermal effects. Finally, to gain some insight into thermal transport in these materials, with the so-developed NEP potential, and using non-equilibrium molecular dynamics simulations, we study the lattice thermal conductivity (κ) of the ternary compound MgNiO2 as a function of temperature. It is found that κ decreases from 4.25 W m−1 K−1 at room temperature to 3.5 W m−1 K−1 at 900 K. This suppression is attributed to the stronger scattering of low-frequency modes at higher temperatures.more » « less
-
The study of high-entropy materials has attracted enormous interest since they could show new functional properties that are not observed in their related parent phases. Here, we report single crystal growth, structure, thermal transport, and magnetic property studies on a novel high-entropy oxide with the spinel structure (MgMnFeCoNi)Al2O4. We have successfully grown high-quality single crystals of this high-entropy oxide using the optical floating zone growth technique for the first time. The sample was confirmed to be a phase pure high-entropy oxide using x-ray diffraction and energy-dispersive spectroscopy. Through magnetization measurements, we found (MgMnFeCoNi)Al2O4 exhibits a cluster spin glass state, though the parent phases show either antiferromagnetic ordering or spin glass states. Furthermore, we also found that (MgMnFeCoNi)Al2O4 has much greater thermal expansion than its CoAl2O4 parent compound using high resolution neutron Larmor diffraction. We further investigated the structure of this high-entropy material via Raman spectroscopy and extended x-ray absorption fine structure spectroscopy (EXAFS) measurements. From Raman spectroscopy measurements, we observed (MgMnFeCoNi)Al2O4 to display a combination of the active Raman modes in its parent compounds with the modes shifted and significantly broadened. This result, together with the varying bond lengths probed by EXAFS, reveals severe local lattice distortions in this high-entropy phase. Additionally, we found a substantial decrease in thermal conductivity and suppression of the low temperature thermal conductivity peak in (MgMnFeCoNi)Al2O4, consistent with the increased lattice defects and strain. These findings advance the understanding of the dependence of thermal expansion and transport on the lattice distortions in high-entropy materials.more » « less
An official website of the United States government
